
Embedded Systems

Programming and Architectures

Dr John Kalomiros

Assis. Professor

Department of Post Graduate studies in
Communications and Informatics

Lecture No 10 : Data acquisition
and data transfer

2

Elements of a data acquisition system

Source: Designing Embedded systems with PIC microcontrollers by Tim Wilmhurst

3

The ideal input-output ADC characteristic

Source: Designing Embedded systems with PIC microcontrollers by Tim Wilmhurst

4

Important characteristics

� Conversion speed: the time needed for a conversion to complete

� Resolution: how much the input changes for each quantum step
(this is dependent on the number of output bits)

� For periodic signals the Nyquist sampling criterion should be met.

According to the criterion the conversion rate should be at least
twice the maximum frequency

� A reference voltage determines the dynamic range of the input
voltage

5

Sample and hold circuit.
The meaning of acquisition time

Sample and Hold acquisition time:

VC should become close to VS by

some error value. To ensure good

accuracy, the error should be less

than ½ LSB. At 10 bit this means

rise time t=7,6RC

6

Conversion time and total conversion rate

Beside S & H acquisition time, the ADC needs some time for the actual
signal conversion. Therefore, the total time for one conversion is given as

follows:

total time for conversion = S&H acquisition time + conversion time

Later we shall discuss how these two time intervals are calculated

7

Typical ADC conversion flow

Main time periods implicated:

S&H circuit acquisition time
+ conversion time

8

The PIC 16F87x analog to digital converter

Port A bits can be
allocated to analog or
digital input, according
to settings in an SFR

Source: Microchip data-sheet for PIC16F8xx

9

Formatting the 10-bit result of the ADC

10

Important registers for ADC control and acquisition

ADCON0

ADCON1
ADRESH

ADRESL

Also important: TRISA, TRISB. Any bits used as analog inputs
should be set as inputs

If ADC interrupts are used, then registers PIR1 and PIE1
also play a role

11

Controlling the ADC – the ADCON0 reg

Source: Microchip data-sheet for PIC16F8xx

12

Controlling the ADC – the ADCON1 reg

Source: Microchip data-sheet

for PIC16F8xx

13

Calculation of conversion time

The sample conversion is based on the ADC clock. This clock is

derived from the external oscillator by some division. If the period of the

ADC clock is TAD, then the time of a single 10-bit conversion is

conversion time = 12 x TAD

Clock division for ADC is controlled by bits ADCS2, ADCS1, ADCS0 of the

ADCON0 and ADCON1 registers (slide 10)

Note: ADC clock period TAD cannot be lower than 1,6 µs or the frequency

FAD cannot be higher than 625 KHz. Therefore:

Minimum conversion time = 12 x 1,6 µs = 19,2 µs

14

Calculation of acquisition time

Amplifier settling time ≈ 2µs

Hold capacitor sampling time = 7,6RC=

(RIC + RSS + RS)CΗ = (1K + 7K + RS)120pF = 9,6 µs

(for max RS=2,5K)

total acquisition time = 2µs + 9,6µs = 11,6 µs

15

Total conversion time and maximum sampling rate

total time for conversion = S&H acquisition time + conversion time
or

total time needed for one conversion = 11,6 µs + 19,2 µs = 31 µs

This means that the maximum sampling rate is 32258 samples/sec

or 32 KHz.

According to the Nyquist criterion the higher input frequency can be 16 KHz

(Yes, you may try overclocking, especially when using only 8 out of 10 bits,

however be careful to test the validity of the result by measuring reference

signals and comparing with lower and trusted conversion rates).

16

Let’s write some code: initialize ADC

#include "p16f877.inc"

__CONFIG _CP_OFF & _WDT_OFF & _XT_OSC & _PWRTE_OFF & _CPD_OFF
&_WRT_ENABLE_ON & _BODEN_ON & _LVP_OFF

Org 00

;initialize ADC
bsf STATUS, RP0

movlw b'00011111' ;5 first bits of PORTA inputs

movwf TRISA
movlw b'00000000'

movwf TRISB

movlw b'01000010' ;left justified, ADCS2=1, 3 Dig 5 Analog ch
movwf ADCON1

bcf STATUS, RP0

movlw b'01000001' ;101 Fosc/16, ch0, ADON

movwf ADCON0
clrf PORTB

17

A/D conversion and reading ADC

;conversion
loop1 bcf PIR1, ADIF

nop ;wait for the output of S&H circuit to stabilize
nop
nop
bsf ADCON0, GO

wait btfss PIR1, ADIF
goto wait

;read ADC
movf ADRESH, w
movwf PORTB
goto loop1

end

18

Code in C – make your own functions

#include <htc.h> //or #include "pic1687x.h" for PIC16F877
#include "my_adc.h" //header file with my ADC function definitions

/*Set CONFIGURATION BITS in code*/
__CONFIG(UNPROTECT & PWRTEN & WDTDIS & XT & LVPDIS);

void main(void)
{

init_adc(); // my initialize ADC

while(1)
{
convert_adc(); // my ADC conversion

PORTB=read_adc(); //my ADC reading
}

}

19

my_adc.h – a header file with my functions for A/D con v

//user function prototypes for adc
void init_adc(void);
void convert_adc (void);
char read_adc(void);
void my_delay(void);

//user function definitions for adc
void init_adc (void) // initialize
{
TRISA=0b00000111;
TRISB=0x00;
ADCON1=0b01000010; // left justified, ADCS2=1, 3 Dig 5 Analog ch
ADCON0=0b01000001; // 101 Fosc/16, ch0, ADON
PORTB=0x00;
}

void convert_adc (void) // convert
{
ADIF=0;
my_delay();
ADCON0=ADCON0 | 0b00000100; // GO=1
while (!ADIF); // wait for end of conversion (ADIF=1)
}

char read_adc (void) // return ADC High byte
{
return ADRESH;
}

void my_delay (void) // wait for S&H circuit to stabilize
{
}

20

Serial communication: synchronous and
asynchronous

The heart of serial
communication:

the shift register

The idea of synchronous serial com:

serial data and serial clock lines

21

Enhanced synchronous serial communication:
the I 2C interface

A clear data-transfer protocol is established between master and slaves
Do we really need to send the clock signal wherever the data goes?
(extra line, large bandwidth, loss of synchronization over long distances)
The answer is…

22

Asynchronous serial communication

RS232 is a common standard

for asynchronous serial
communication

Data rate is
predetermined

Each byte is framed
with a start and stop bit

Internal clock runs at a
multiple of the baud rate

23

Main registers of the serial port

PIC USART can be used as synchronous master, synchronous slave or
asynchronous port. As asynchronous port it is full duplex, that is it can transmit

and receive simultaneously, using separate shift registers for Transmit and

Receive.
Input and output rate is controlled by a circuit called baud rate generator. The

serial port clock has a frequency which is a multiple of the baud rate.

USART operation is controlled by two registers, TXSTA and RCSTA.

RCSTA.SPEN enables the Serial Port TXSTA.SYNC selects synchronous or

asynchronous mode
Data to be transmitted are written by the program into TXREG

Received data go into RXREG

Serial Port Baud rate Generator SPBRG register controls the baud rate,
depending on the value it holds.

24

Transmitter block diagram

TXSTA register TXEN, TRMT, TX9 control the transmit process

TXIE and TXIF belong to PIE1 and PIR1 registers

SPEN belongs to RCSTA

25

TXSTA, for reference

26

Control of the baud rate generator

Bit BRGH controls high and low rate

27

Registers related to asynchronous transmission

28

Transmit procedure

� Initialize SPBRG writing the proper baud rate code value (see slide

25). If high baud rate is required then set BRGH=‘1’

� Enable asynchronous serial port by resetting ‘0’ the SYNC bit

(TXSTA<4>) and setting ‘1’ the SPEN bit (RCSTA<7>).

� If interrupts are to be used then ΤΧΙΕ bit has to be enabled

(PIE1<4>). In this case INTCON bits <6> and <7> should be set.

� Transmission is enabled by setting TXEN bit (TXSTA<5>).

� To begin serial data transfer test TXIF and if it is set then load

TXREG with data. (TXIF=1 means TSR is loaded, therefore TXREG

is empty). The flag is auto-reset when TXREG is reloaded.

29

Receiver block diagram

30

RCSTA, for reference

31

Registers related to asynchronous reception

32

Receive procedure

� Two first steps are same as in transmit procedure

� Continuous reception is enabled by setting CREN=‘1’ in RCSTA

� When RCIF is ‘1’ a byte has been received in RCREG

� RCREG is read and used for further processing

33

Initialization of serial port, no interrupts

;initialize serial port
initialize bsf STATUS,RP0

movlw 0x00
movwf TRISB ;PORTB output for display
movlw b'10000001' ;RC7 (RX) input, RC0 input
movwf TRISC
movlw b'00100100' ;Transmit enable, high speed baud rate
movwf TXSTA
movlw d'103' ;2404 bps, fosc=4MHz, see slide 25
movwf SPBRG
bcf STATUS,RP0
movlw b'10010000' ;port is on, 8-bit transfer, no address detect,
movwf RCSTA ;continuous receive enabled
return

34

Send and Receive subroutines

send btfss PIR1,TXIF ; wait for TXIF to become '1'
goto $-1 ; before TXREG is loaded
movwf TXREG
return

receive btfss PIR1,RCIF ; when new character is received RCIF=1
goto receive ; wait to receive
movf RCREG,w ; read RCREG
return

35

Example main routine for serial send and receive

Org 0

call initialize
movlw 0xAA ;test pattern
movwf PORTB

main movf PORTD,w
call send
call receive
movwf PORTB
goto main

36

Interrupt on byte reception: activation and ISR

In subroutine initialization we add the following lines (interrupt enable)

bsf STATUS, RP0
bsf PIE1, RCIE ;Enable Reception Interrupts
bcf STATUS, RP0
bcf PIR1, RCIF ;clear Reception interrupt flag
bsf INTCON, PEIE ;Enable Peripheral Interrupts
bsf INTCON, GIE ;General Interrupt Enable

Instead of subroutine receive we now write an ISR:

ISR_rec movf RCREG, W

bcf PIR1, RCIF ;clear Reception interrupt flag
retfie

37

Project No 8

1. Write a C application that reads values from an analog
Channel (ch3) and transmits them in digital form through
asynchronous serial port.

2. Write a C application for a second MCU that receives
through serial com the values transmitted above and
displays them on the LEDs of PORTB

38

Required reading:

Designing Embedded Systems with PIC microcontrollers
by Tim Wilmshurst, chapters 10 and 11.

