Embedded Systems
Programming and Architectures

Lecture No 10 : Data acquisition
and data transfer

TEI f‘\ Dr John Kalomiros

ZEPPON Assis. Professor

Department of Post Graduate studies in
Communications and Informatics

000
0000
0000
L o000
Elements of a data acquisition system o0
o
Filter Multiplexer
Removes unwanted ~_ Selects which ADC
signal components, ~ iNPut channel is Converts its
Transducer usually for anti- connected to its Sample and hold analqg inputtoa Voltage
Generates signal aliasing purposes output Samples its input digital output reference
sighal and holds
that voltage as a —
steady value at its
() output
O x
i j o
i 0 " N
Sample Digital
: output
Amplify and offset Start Output
Amplifies signal and T Input select conversion result CPU
adds DC offset to Conversion control
match ADC input range complete
2

Source: Designing Embedded systems with PIC microcontrollers by Tim Wilmhurst

The ideal input-output ADC characteristic

Digital
output

(2" 1) —

(2"-2) —

100 — —

011 -

010

..001 —

Analog
max input

<] 1

—
p—

v

Input range

Source: Designing Embedded systems with PIC microcontrollers by Tim Wilmhurst

Important characteristics

Conversion speed: the time needed for a conversion to complete

Resolution: how much the input changes for each quantum step
(this is dependent on the number of output bits)

For periodic signals the Nyquist sampling criterion should be met.

According to the criterion the conversion rate should be at least
twice the maximum frequency

A reference voltage determines the dynamic range of the input
voltage

Sample and hold circuit.

The meaning of acquisition time

Signal source

o Input O/,O e

R

VS C) Control C
Vel 7T

Qutput

Ve

0.9995 Vg

0.9980 Vg

0.9000 Vg

2.3RC 6.2RC 7.6RC

Sample and Hold acquisition time:

V¢ should become close to V¢ by
some error value. To ensure good
accuracy, the error should be less
than 2 LSB. At 10 bit this means
rise time t=7,6RC

Conversion time and total conversion rate

Beside S & H acquisition time, the ADC needs some time for the actual
signal conversion. Therefore, the total time for one conversion is given as
follows:

total time for conversion = S&H acquisition time + conversion time

Later we shall discuss how these two time intervals are calculated

Typical ADC conversion flow

Configure and enable ADC

Select multiplexer input

Y

‘Sample’ input signal

Y

Delay for signal acquisition

4 Y

‘Hold’ input signal

Y

Start conversion

Y

Delay for conversion
to complete

Y

Read data

These stages merge
if multiplexer forms
part of S&H

Main time periods implicated:

S&H circuit acquisition time
+ conversion time

The PIC 16F87x analog to digital converter

A/D
Converter

Port A bits can be

y

External
inputs for
voltage
reference

allocated to analog or

Input select Il?plut
. multiplexer
— \stlzchso e
. 111
< —o RE2/AN7TN
: 110
. 0 RE1/ANsM
. 101
' 0 REO/ANS!T)
. 100
VAIN '
(Input Voltage) ' o1l RA3/AN3/VREF +
. 010
0 —0@ RAZ2/AN2/VREF
001
VoD \\} g RA1/AN1
"""" 000
VREF+ : o/ . —© \> g RAG/ANO
(Reference ! o
Voltage) SRR
PCFG3:PCFGO
VREF- . O/G j
Refarence '
(Vultage) - . l
_ [T vss
PCFG3:PCFGO

Source: Microchip data-sheet for PIC16F8xx

digital input, according
to settings in an SFR

'YX
0000
0000
e00
- . ..
Formatting the 10-bit result of the ADC o
10-bit Result
ADFM = 1 ADFM = 0
Y Y
's A N ~ "A'_ =
2107 0 7 0765 0
000000 . 0000 00
v > v ! * g * e ’
ADRESH ADRESL ADRESH ADRESL
h ~" 7 h ~ g
10-bit Result 10-bit Result

Right Justified Left Justified

Important registers for ADC control and acquisition

CCPR2H | 1Ch CMCON | 9Ch
ADCONO CCP2CON_| 10h CVACON
| ADRESH | 1Eh ADRESL 9Eh
ADCO N 1 ADCOMNO 1Fh ADCON1 9Fh
20h ADh
ADRESH
ADRESL General General
FPurpose Purpose
Register Register

Also important: TRISA, TRISB. Any bits used as analog inputs
should be set as inputs

If ADC interrupts are used, then registers PIR1 and PIE1
also play a role

10

000
. 0000
Controlling the ADC —the ADCONO reg e0oeo
o0
RW-0 RW-0 ||RW-0 RW-0 RW-oO| RMW-0 U0 RMW-0 ©
ADCS1 ADCSO0 CHS2 CHS1 CHSO | | GO/DONE — ADON
bit 7 bit 0
bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCONQO bits in bold)
ADCON1 ADCONO .
<ADCS2> | <ADCS1:ADCSO> Clock Conversion
0 00 Fosc/2
0 01 Fosc/8
0 10 Fosc/32
] 11 FRC (clock derived from the internal A/D RC oscillator)
1 00 Fosc/4
1 01 Fosc16
1 10 Fosc/64
1 11 FRC (clock derived from the internal A/D RC oscillator)
bit 5-3 CHS2:CHSO0: Analog Channel Select bits
000 = Channel 0 (ANO)
001 = Channel 1 (AN1)
010 = Channel 2 (AN2) bit2 GO/DONE: A/D Conversion Status bit
011 = Channel 3 (AN3) When ADON = 1:
100 = Channel 4 (AN4) 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
101 = Channel 5 (ANS5) cleared by hardware when the A/D conversion is complete)
110 = Channel 6 (AN6) 0 = A/D conversion not in progress
111 = Channel 7 (AN7) bit 1 Unimplemented: Read as ‘0’
bit0 ADON: A/D On bit
1 = A/D converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current
11

Source: Microchip data-sheet for PIC16F8xx

000
. 0000
Controlling the ADC —the ADCONL1 reg seee
o0
R/W-0 R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 o
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGO
bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0.
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0’.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

bit 3-0 PCFG3:PCFGO: A/D Port Configuration Control bits
P | AN7 | ANG | ANS | AN4 | AN3 | AN2 | AN1 | ANO | VREF+ | VREF- | C/R
0000 A A A A A A A A VoD Vss 8/0
0001 A A A A | VREF+ A A A AN3 Vss 7
0010 D D D A A A A A VDD Vssg 5/0
0011 D D D A | VREF+ A A A AN3 Vss 41
0100 D D D D A D A A VDD Vss | 3/0
0101 D D D D | VREF+ D A A AN3 | Vvss | 2/1
011x D D D D D D D D — — 0/0
1000 A A A A VREF+ | VREF- A A AN3 ANZ2 6/2
1001 D D A A A A A A VDD Vss 6/0
1010 D D A A | VREF+ A A A AN3 | Vss | 5/1
1011 D D A A VREF+ | VREF- A A AN3 | AN2 4/2
1100 | D D D A | VREF+ | VREF- | A A | AN3 | AN2 | 3/2 Source: Microchip data-sheet
1101 D D D D | VREF+ | VREF- | A A AN3 | AN2 | 2/2 for PIC16F8xx
1110 D D D D D D D A VDD | Vss 1/0
1111 D D D D VREF+ | VREF- D A AN3 AN2 1/2
A= Analog input D = Digital /O 12

Calculation of conversion time

The sample conversion is based on the ADC clock. This clock is

derived from the external oscillator by some division. If the period of the
ADC clock is T,p, then the time of a single 10-bit conversion is

conversion time = 12 x T,

Clock division for ADC is controlled by bits ADCS2, ADCS1, ADCSO0 of the
ADCONO and ADCONL registers (slide 10)

Note: ADC clock period T, cannot be lower than 1,6 us or the frequency
F .o cannot be higher than 625 KHz. Therefore:

Minimum conversion time =12 x 1,6 ys = 19,2 ys

13

000
. - e . 0000
Calculation of acquisition time 3
:0
VD Sampling
;; VT = 0.6V Swiich
CHOLD
= DAC Capacitance
=120 pF
ss

t.c = Amplifier settling time + Hold capacitor charging time

Amplifier settling time ~ 2us

Hold capacitor sampling time = 7,6RC=

(Ric + R + RS)C, = (1K + 7K + Rg)120pF = 9,6 ps
(for max Rs=2,5K)

total acquisition time = 2us + 9,6us = 11,6 pus

14

Total conversion time and maximum sampling rate

total time for conversion = S&H acquisition time + conversion time
or
total time needed for one conversion = 11,6 uys + 19,2 us = 31 us

This means that the maximum sampling rate is 32258 samples/sec
or 32 KHz.

According to the Nyquist criterion the higher input frequency can be 16 KHz

(Yes, you may try overclocking, especially when using only 8 out of 10 bits,
however be careful to test the validity of the result by measuring reference
signals and comparing with lower and trusted conversion rates).

15

Let’'s write some code: initialize ADC

#include "pl16f877.inc"

__CONFIG _CP_OFF & WDT _OFF & XT OSC & PWRTE_OFF & CPD_OFR
& WRT_ENABLE_ON & BODEN_ON & LVP_OFF

Org 00

;initialize ADC

bsf STATUS, RPO

moviw b'00011111" ;5 first bits of PORTA inputs
movwf TRISA

moviw b'00000000'

movwf TRISB

moviw b'01000010' ;left justified, ADCS2=1, 3 Dig 5 Analog ch
movwf ADCON1

bcf STATUS, RPO

moviw b'01000001' ;101 Fosc/16, chO, ADON
movwf ADCONO

clrf PORTB

16

A/D conversion and reading ADC

;conversion

loopl bcf PIR1, ADIF
nop ;wait for the output of S&H circuit to stabilize
nop
nop
bsf ADCONO, GO

wait btfss PIR1, ADIF
goto wait

;read ADC
movf ADRESH, w
movwf PORTB
goto loopl

end

17

Code in C — make your own functions

#include <htc.h> /lor #include "pic1687x.h" for PIC16F877
#include "my_adc.h" //header file with my ADC function definitions

[*Set CONFIGURATION BITS in code*/
___CONFIG(UNPROTECT & PWRTEN & WDTDIS & XT & LVPDIS);,

void main(void)

{ init_adc(); /[my initialize ADC
while(1)
f:onvert_adc(); /[my ADC conversion
PORTB=read_adc(); //Imy ADC reading
}

18

my_adc.h — a header file with my functions for A/D con

/luser function prototypes for adc
void init_adc(void);

void convert_adc (void);

char read_adc(void);

void my_delay(void);

/luser function definitions for adc
void init_adc (void)

{

TRISA=0b00000111;
TRISB=0x00;
ADCON1=0b01000010;
ADCONO0=0b01000001;
PORTB=0x00;

}

void convert_adc (void)

{

ADIF=0;

my_delay();

ADCONO=ADCONO | 0b00000100;
while (!ADIF);

}

char read_adc (void)

{
return ADRESH;

}

void my_delay (void)

{
}

[/l initialize

/I left justified, ADCS2=1, 3 Dig 5 Analog ch
// 101 Fosc/16, chO, ADON

/I convert

I GO=1

/[wait for end of conversion (ADIF=1)

// return ADC High byte

/I wait for S&H circuit to stabilize

\Y

19

Serial communication: synchronous and

asynchronous

Q, Qg Qg Qp Qe Qr Qg Qy
Dy J L l L L J L The heart of serial
N 1p q-e{D a D oD ae{D a D Q D Q-e1{D Q))

Dour communication:

y T F F T { T the shift register

Clk - -
SERIAL NODE 1 SERIAL NODE 2
G Parallel dataout j| o Parallel dataout |
: Setial {} Serial | | Serial {} :
, data in data out | | datain Serial data
‘ Clock |] Clock out,
\ \
| {7 | | 2 |
: Parallel Data In | ! Parallel Data In :
_ ,‘, iiiiiiiiiiiiiiii 1 r - 1 - - - - - - - _— _— _— _— —_— _— _—_ —_- _ _
Clock

source

The idea of synchronous serial com:

serial data and serial clock lines

20

Enhanced synchronous serial communication:

the 12C interface

SCL (serial clock)

VDD

S

Rpy

Pull-up resistors

‘Stray’ capacitance

SDA (serial data)

* —
Data ouﬂ l: Clock ouﬂ I:

77 s

Data in i Clock in i

Node 1

[
Data oﬂ I:

77

Data in i

L
Clock ouﬂl:

77

Clock in i

Node 2

A clear data-transfer protocol is established between master and slaves
Do we really need to send the clock signal wherever the data goes?
(extra line, large bandwidth, loss of synchronization over long distances)

The answer is...

21

XY
_ o T
Asynchronous serial communication ooos
o0
o
bt Stop .
bit Data rate is
Idle state d;:tigséit dc‘!l_‘taasgit Idle state p red ete rm I n ed
! L ¢X ey ¢X / =2 Each byte is framed
T T T with a start and stop bit
Start — X .
= BT
inserted here
Midpoint of
Midpoint_ first data bit
RS232 is a common standard oot e
Idle state Stgrt l ez
for asynchronous serial 4 L= b
communication g l

Receiver clock,
Internal clock runs at a | saslia | VTN AIT
mL”tIple Of the baud rate expected bit rate

22

Main registers of the serial port

PIC USART can be used as synchronous master, synchronous slave or
asynchronous port. As asynchronous port it is full duplex, that is it can transmit
and receive simultaneously, using separate shift registers for Transmit and
Receive.

Input and output rate is controlled by a circuit called baud rate generator. The
serial port clock has a frequency which is a multiple of the baud rate.

USART operation is controlled by two registers, TXSTA and RCSTA.
RCSTA.SPEN enables the Serial Port TXSTA.SYNC selects synchronous or
asynchronous mode

Data to be transmitted are written by the program into TXREG

Received data go into RXREG

Serial Port Baud rate Generator SPBRG register controls the baud rate,
depending on the value it holds.

23

Transmitter block diagram

F Data Bus
TXIF TXREG Register
TXIE 3
.' -- MSh ~ T T Tttt tttti&hT
; Pin Buffer _
@ *r F| . and Control -
QU S, TSR Register_ _ _ __ __ ! RC6/TX/CK pin
interrupt
- TXEN | Baud Rate CLK ; '
Transmit |7 | TRMT spen|[Serial Port
Enable : . 9-bit Transmit Enable
; SPBRG ' Enable
Baud Rate Generator TX9 Transmit Shift
TX9D || 9th data bit Register Status

TXSTA register TXEN, TRMT, TX9 control the transmit process
TXIE and TXIF belong to PIE1 and PIR1 registers
SPEN belongs to RCSTA

24

bit 7

bit 6

bit &

bit 4

bit 3
bit 2

bit 1

bit 0

TXSTA, for reference

RW-0 R/W-0 R/W-0 R/W-0 u-0 R/W-0 R-1 R/W-0
| csRc | T | TXEN | sync | . — I BRGH [TRMT | TxeD |
bit 7 bit 0
CSRC: Clock Source Select bit

Asynchronous mode:

Don't care.

Synchronous mode;

1 = Master mode {clock generated internally from BRG)

0 = Slave mode {clock from external source)
TX9: 9-hit Transmit Enable bit

1 = Selects 9-bit transmission

0 = Selects 8-bit transmission

TXEN: Transmit Enable bit

1 = Transmit enabled
0 = Transmit disabied

Note: SREN/CREN overrides TXEN in Sync mode.

SYNC: USART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode

Unimplemented: Read as ‘0’
BRGH: High Baud Rate Select bit
Asynchronous mode;

1 = High speed

0 = Low speed

Synchronous mode:
Unused in this mode.
TRMT: Transmit Shift Register Status bit

1 = TSR empty
0 = TSR full

TX9D: oth bit of Transmit Data, can be Parity bit

25

Control of the baud rate generator

Bit BRGH controls high and low rate

JCDSC
64([SPBRG]| + 1)
f:Z}SC
I6([SPBRG] + 1)

For BRGH = 0 Baud rate =

For BRGH = 1 Baud rate =

26

Registers related to asynchronous transmission

Waluz on: Walua on

Address [Mame Bit 7 Bit & Bit s Bitd | Bit3 Bit 2 Bit 1 Bit 0 POR, all othar

BOR RESETS

OBh, 8Bh, [INTCON GIE PEIE TOIE INTE | REIE TOIF INTF ROIF | ocooo ooox | oooo O00uw
10Bh, 18Eh

oZh PIR1 PEPIFY | ADIF | RCIF TXIF | S8PIF| CCPUF] TMR2IF | TMRIIF | ocooo oooo | oooo ooo

18h RCSTA =PEN FX8 | SEEN | CREN — FERER DERR BX80 | cooo -oox | 0000 -00x%

19h TXREG | USART Transmit Register oO00 0000 | 0000 0000

BZh PIE1 PSPIE'Y | ADIE | RCIE THIE | B5PIE| CCP1IE] TMR2IE | TMRIIE| cooo cooo | oooo oooo

25h TASTA C3RC Txa TXEN | SYMC — BERGH TEMT THE0 | oooo -olo] 0000 -010

24h

SFPERG

Baud Rate Generator Begistar

27

Transmit procedure

Initialize SPBRG writing the proper baud rate code value (see slide
25). If high baud rate is required then set BRGH="1"

Enable asynchronous serial port by resetting ‘0’ the SYNC bit
(TXSTA<4>) and setting ‘1’ the SPEN bit (RCSTA<7>).

If interrupts are to be used then TXIE bit has to be enabled
(PIE1<4>). In this case INTCON bits <6> and <7> should be set.

Transmission is enabled by setting TXEN bit (TXSTA<5>).

To begin serial data transfer test TXIF and if it is set then load
TXREG with data. (TXIF=1 means TSR is loaded, therefore TXREG
IS empty). The flag is auto-reset when TXREG is reloaded.

28

Receliver block diagram

Continuous
Receive Enable

Overrun Error

Framing Error

_ . X64BaudRate CLK OERR FERR
; ; CREN
Fosc . SPBRG ' . l _____ t ,,,,,,,,,, [______
. : | Tg? ' MSb RSR Register LSb
" " Baud Rate Generator +16 o Stop |(8) 7| eve [1{0] Stan
RC7/RX/DT ¥ N S
Pin Buffer Data
and Control Recovery [;xg
9-bit Receive
Enable /
SPEN ¥/ RX9D| RCREG Register
9th received FIFO
Serial Port data bit
Enable
A8
Interrupt C RCIF Data Bus
RCIE

*

29

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

000
RCSTA, for reference 'TXX
o000
RW-0 RMW-0 RW-0 RMW-0 RW-0 R-0 R-0 R-x o000
| sPEN | Rxe | SREN | CREN | ADDEN | FERR | OERR | RxeD (X
bit 7 bit 0 o
SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)

0 = Serial port disabled

RX9: 9-bit Receive Enable bit

1 = Selecis 9-bit reception

0 = Selects 8-bit reception
SREN: Single Receive Enable bit
Asynchronous mode:

Don't care.

Synchronous mode — Master:
1 = Enables single receive
0 = Disables singie receive
This bit is cleared after reception is complete.
Synchronous mode — Slave:
Don't care.
CREN: Continuous Receive Enable bit
hr X
1 = Enables continuous receive
0 = Disables continuous receive
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive
ADDEN: Address Detect Enable bit

Asynchronous mode 8-bit (AX9 = 1):
1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8>
is set
0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit
FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREG register and receive next valid byte)
0 = No framing error
OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN}
o = No overrun error 30

RX9D: 9th bit of Received Data (can be parity bit but must be calculated by user firmware)

Registers related to asynchronous reception

Value on: Value on

Address | MNames Bit 7 Bit & Bit & Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, all cther

BOR RESETS
OBh, BBh, | INTZOM GlE PEIE TME IMTE | RBIE TOIF INTF ROIF 00a9 00dx | 0000 000U

10Eh,18BR

och FIR1 pseIFY aDiF RCIF TEIF | S5PIF | CCPIIF | TMR2IF | TMEAIF | gooo oooo | oooo oooo
18h RCSTA SPEM Rxg SREM | CREM — FERR JOERR RESD | pooo -oox | oooo -0
AR RCREEG |USART Receive Register goaa aaan | oooo oooo
ECh FIE1 rspiEt™ aDiE RCIE TXIE | S5RPIE| CCP1IE | TMRZIE | TMR1IE| pooo oooo | oooo oooo
9Bk THETA CSRC TX2 THEM | S¥YMNC — BRGH TRMT TXBD | oooo -010 | oooo -ol0
Q8h SPERG |Baud Rate Generator Register ogoon ooaa | oooo oooo

31

Receive procedure

Two first steps are same as in transmit procedure

Continuous reception is enabled by setting CREN=1"in RCSTA
When RCIF is ‘1’ a byte has been received in RCREG

RCREG is read and used for further processing

32

(XY
'TXX
Initialization of serial port, no interrupts ooo’
:0
;initialize serial port
Initialize bsf STATUS,RPO
moviw 0x00
movwf TRISB ;PORTB output for display
moviw b'10000001" ;RC7 (RX) input, RCO input
movwf TRISC
moviw b'00100100° ;Transmit enable, high speed baud rate
movwf TXSTA
moviw d'103' ;2404 bps, f,..=4MHz, see slide 25
movwf SPBRG

bcf STATUS,RPO

movlw b'10010000' ;portis on, 8-bit transfer, no address detect,
movwf RCSTA ;continuous receive enabled

return

33

000
0000
X XX
4
Send and Receive subroutines o
send Dbtfss PIR1,TXIF : walit for TXIF to become "1’
goto $-1 ; before TXREG is loaded
movwf TXREG
return
receive btfss PIR1,RCIF : when new character is received RCIF=1
goto receive ; walt to receive

movf RCREG,w ' read RCREG
return

34

Example main routine for serial send and receive

main

Org 0

call initialize

moviw OXAA ;test pattern
movwf PORTB

movf PORTD,w

call send

call receive

movwf PORTB

goto main

35

Interrupt on byte reception: activation and ISR

In subroutine initialization we add the following lines (interrupt enable)

bsf STATUS, RPO

bsf PIEL, RCIE ;Enable Reception Interrupts
bcf STATUS, RPO

bcf PIR1, RCIF ;,clear Reception interrupt flag
bsf INTCON, PEIE ;Enable Peripheral Interrupts
bsf INTCON, GIE ;General Interrupt Enable

Instead of subroutine receive we now write an ISR:

ISR _rec movf RCREG, W
bcf PIR1, RCIF ;clear Reception interrupt flag
retfie

36

Project No 8

1. Write a C application that reads values from an analog
Channel (ch3) and transmits them in digital form through
asynchronous serial port.

2. Write a C application for a second MCU that receives
through serial com the values transmitted above and
displays them on the LEDs of PORTB

37

Required reading:

Designing Embedded Systems with PIC microcontrollers
by Tim Wilmshurst, chapters 10 and 11.

38

