
Research paper

3D geospatial visualizations: Animation and motion effects on
spatial objects

Konstantinos Evangelidis a,*, Theofilos Papadopoulos a, Konstantinos Papatheodorou a,
Paris Mastorokostas b, Constantinos Hilas c

a Technological Educational Institute of Central Macedonia, Faculty of Applied Technology, Department of Civil, Surveying and Geoinformatics Engineering, Terma
Magnisias, 62124 Serres, Greece
b Department of Computer Engineering, Piraeus University of Applied Sciences, 250, Thivon & P. Ralli Str., 12244 Egaleo - Athens, Greece
c Technological Educational Institute of Central Macedonia, Faculty of Applied Technology, Engineering Informatics Department, Terma Magnisias, 62124 Serres, Greece

A R T I C L E I N F O

Keywords:
3D geospatial visualization
3D spatial objects motion
WebGL
Javascript

A B S T R A C T

Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-
dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the
terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g.
KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey
on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step
beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed
on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visuali-
zation capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as
well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion
of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial
applications or development frameworks. Towards this we developed and made available to the research com-
munity, an open geospatial software application prototype that provides high level capabilities for dynamically
creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user
specified locations, paths and areas. At the same time, the generated code may enhance existing open visuali-
zation frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual
world.

1. Introduction

We have come a long way since the appearance of the first web
mapping projects at the end of the 20th century (Haklay et al., 2008). The
technological progress that affected crucially this area included, first of
all, the tremendous increase of internet speed connections (Eha, 2013),
combined with efficient image compression and presentation techniques
(e.g. tiled rendering) that allowed web clients to request rich raster im-
ages associated with large spatial datasets (Batty et al., 2010). As a result,
today it is a routine job to perform a virtual tour, on an unknown or
inaccessible area or surface, by navigating through a browser over a
three-dimensional (3D) Digital Terrain Model (DTM) or a Digital Surface

Model (DSM) or a set of joined panoramic photographs.1 Secondly, the
substantial progress occurred in Web Semantics and the related geo-
spatial web services introduced by the Open Geospatial Consortium
(OGC), with Web Map Service (WMS) being directly applicable and
widely used, have enabled data sharing and interoperability among
different fields of geosciences (Evangelidis et al., 2014). The aforemen-
tioned evolutions assisted also by the progress met in IT and hardware
infrastructure extended the usage of location based services, also termed
as geoservices, in people daily activities through the rapid penetration of
smartphone and tablet devices. Recent studies showed that 35% of
smartphone users in the five largest European economies access maps on
their device (Oxera, 2013) while at the same time map usage via

* Corresponding author. Technological Educational Institute of Central Macedonia, Faculty of Applied Technology, Terma Magnisias, 62124 Serres, Greece.
E-mail addresses: kevan70@gmail.com (K. Evangelidis), priestont@gmail.com (T. Papadopoulos), conpap@teicm.gr (K. Papatheodorou), mast@teipir.gr (P. Mastorokostas), chilas@

teicm.gr (C. Hilas).
1 https://www.google.com/maps/streetview/explore/index.html.

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier .com/locate/cageo

https://doi.org/10.1016/j.cageo.2017.11.007
Received 22 November 2015; Received in revised form 21 December 2016; Accepted 1 November 2017
Available online 21 November 2017
0098-3004/© 2017 Elsevier Ltd. All rights reserved.

Computers and Geosciences 111 (2018) 200–212

mailto:kevan70@gmail.com
mailto:priestont@gmail.com
mailto:conpap@teicm.gr
mailto:mast@teipir.gr
mailto:chilas@teicm.gr
mailto:chilas@teicm.gr
https://www.google.com/maps/streetview/explore/index.html
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.11.007&domain=pdf
www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2017.11.007
https://doi.org/10.1016/j.cageo.2017.11.007
https://doi.org/10.1016/j.cageo.2017.11.007

smartphone is growing seven times faster than via the classic web.2 In
conclusion, today, technological capabilities from the one side and peo-
ple daily needs from the other, justify efforts spent towards enhancing
graphical representations of geospatial data over the web by providing
3D visualization and animation effects on spatial objects.

Computer graphics technologies can nowadays offer high 3D
modeling visualization and animation capabilities combined with high
satisfaction end-user interactivity, through a web browser. Such de-
velopments are supported by cross-platform frameworks like WebGL
API,3 which are interpreted and rendered directly by any web browser
compatible with World Wide Web Consortium (W3C) proven standards,
without the need of installing plug-ins. The above technologies are
mainly applied in recreational applications (3D Games) or applications
with 3D photorealistic effects representing the real world, without
maintaining the geospatial dimension of the involved objects. In other
words, the graphical representations in such frameworks are not asso-
ciated with a georeferenced area or map, and the geospatial aspect of the
involved animated and moving objects does not have any practical value.

In the geospatial community, Digital Elevation Models (DEMs) either
DTMs or DSMs are widely used over the last 25 years providing views of
the ground terrain or surface along with elevation values.4 Today
Geographic Information Systems (GIS) software can export DEMs into an
interoperable XML-based format.5 Such way DEMs may be potentially
visualized through web browsers and furthermore, managed by appli-
cations developed under the prevailing on the World Wide Web (WWW)
open software development technologies. By employing 3D models that
represent inanimate or animated objects and also by utilizing open li-
braries providing animation and movement functionalities on these ob-
jects it is possible to achieve real world geo-referenced simulations like
for example a herd of animated animals moving through a forest on top of
a DTM served by a WMS. The above may be enhanced with major GIS
functionalities, such as the creation of thematic layers for the various
different categories of 3D models along with the interactivity of these
spatial models with user specified geospatial locations, paths or areas.
Thus, the coupling of geospatial functionalities on the one hand, with
computer graphics web technologies on the other, may be considered as a
strong applied research challenge and is reflecting the clear objective of
the presented work.

To achieve this, we gathered potential desirable functionalities
involving both animation and moving capabilities of 3D models (spatial
objects), yet not currently offered, at least in a complete, structured and
usable form, by existing open web-GIS environments or Javascript (JS)
libraries. For example a user selected 3Dmodel representing an animated
object (e.g. a galloping horse), scaled to fit to a 3D world created by the
user (e.g. a forest in a mountain area), and also moving on a user-
specified path, is one of them. To populate a user-specified area with a
3D spatial object representing for example a plant, or with an animated
texture in order to simulate for example water, are additional interesting
functionalities. Ideally, such functionalities and many more should be
applied on user specified dynamic geospatial worlds, designed in various
independent thematic layers, possessing any geographic, or not, non
angular coordinates. For this reason the presented work considers also
typical GIS-based capabilities to fully provide the geospatial aspect of 3D
modeling visualization, animation and moving effects.

Having made the proposed work available for the research commu-
nity6 it is possible to be directly exploited by acting as a supplement to
existing JS libraries. For example it may extend the non geospatial li-
braries which focus on 3D animation (e.g. Three.js7) with geospatial

functionalities. In addition it may enhance geospatial libraries that
mainly focus on 3D globes and spatial data visualizations (e.g.
Cesium.js8) with major GIS-based capabilities. The results of the above
approach may act as a forerunner for enriching Earth Browsers with
capabilities of representing 3D referenced inanimate or moving and
animated spatial objects (e.g. flora and fauna) as well as phenomena
simulations (weather phenomena, landslides, floods etc.)

2. Related work

Today JS has become the dominant programming language employed
by the majority of websites and supported by all modern web browsers
without plug-ins. The WebGL JS API, based on OpenGL,9 utilizes hard-
ware acceleration and brings 3D to the web, standing as the base for
continuously emerging Javascript visualization frameworks and libraries
developed on top of it. In this respect the presented work and the related
works reviewed are exclusively based on the above free web standards.
However, a reference to the following technologies should be cited:

� Java 3D, the 3D API for Java platform, running since 2012 on top of
JOGL10 binding to OpenGL specification, exhibits quite a lot sophis-
ticated 3D featured projects (e.g. NASA World Wind11). To our best
knowledge, research efforts rather focus on database connectivity
issues (Hobona et al., 2006) or scientific analyses (Vance et al., 2005)
than on animation or motion effects on geospatial objects.

� Google Earth, being one of the most popular APIs for building 3D
mapping browser-based applications with JS has stopped being sup-
ported by dominant browsers for security reasons and Google
announced its deprecation.12

Geospatial visualizations over the web are not a new topic (Kahkonen
et al.,1999; Huang et al., 2001; Huang and Lin, 2002; Billen et al., 2008).
However, the development of powerful and free JS frameworks and li-
braries on top of WebGL, compiled just in time by modern browsers,
boosted up performance and allowed more complicated visualizations
during last five years (Christen et al., 2012; Gesqui�ere and Manin, 2012,
Resch et al., 2014; Rumor et al., 2014; Krooks et al., 2014; Kr€amer and
Gutbell, 2015).

Table 1 is an attempt to gather currently available WebGL visualiza-
tion frameworks, libraries and projects and present their major visuali-
zation features and geospatial capabilities. Specifically, the 'animation'
feature refers to the capability of loading animated 3D models and
placing them on a 3D terrain, while the 'motion' feature refers to the
capability of placing 3D models at different terrain positions in each
rendering, simulating that way the movement of a 3D model. When, the
motion of a model may be dynamically specified by the user, this is
depicted in the table as 'interactive motion'.

Major GIS-based functionalities are evaluated through the
following features:

� 'spatial reference' assigned to the 3D terrain through the trans-
formation of the design dimensions in to a user specified coordinate
system

� 'overlaying' of multiple thematic layers containing geospatial features
or 3D models, with the aim to compose a 'Geospatial World'

� import of 'external feature data sources' with the aim to populate them
with 3D models or animated textures, or to use them as specifiers of
motion paths

2 http://www.comscore.com/Insights/Press-Releases/2012/5/EU5-Map-Usage-via-
Smartphone-Growing.

3 https://www.khronos.org/webgl/.
4 http://nationalmap.gov/standards/demstds.html.
5 http://www.qgistutorials.com/en/docs/working_with_terrain.html.
6 https://github.com/Prieston/3dav.
7 http://threejs.org/.

8 http://cesiumjs.org/.
9 https://www.opengl.org/.

10 http://jogamp.org/jogl/www/.
11 http://worldwind.arc.nasa.gov/java/.
12 http://googlegeodevelopers.blogspot.gr/2014/12/announcing-deprecation-of-
google-earth.html.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

201

http://www.comscore.com/Insights/Press-Releases/2012/5/EU5-Map-Usage-via-Smartphone-Growing
http://www.comscore.com/Insights/Press-Releases/2012/5/EU5-Map-Usage-via-Smartphone-Growing
https://www.khronos.org/webgl/
http://nationalmap.gov/standards/demstds.html
http://www.qgistutorials.com/en/docs/working_with_terrain.html
https://github.com/Prieston/3dav
http://threejs.org/
http://cesiumjs.org/
https://www.opengl.org/
http://jogamp.org/jogl/www/
http://worldwind.arc.nasa.gov/java/
http://googlegeodevelopers.blogspot.gr/2014/12/announcing-deprecation-of-google-earth.html
http://googlegeodevelopers.blogspot.gr/2014/12/announcing-deprecation-of-google-earth.html

� creation of a 'custom geospatial world' based on user-defined layers of
features and 3D models

A thorough study of the selected software items resulted to the
following conclusions strengthening the need for performing the pre-
sented work:

Three.js makes it possible to create complex 3D animations, geome-
tries and impressive effects, while Cesium.js is ideal for creating globes
and gathers plenty of advanced geospatial functionalities such as terrain
visualization and imagery layers draw using geospatial web services and
standards. Qgis2Threejs13 is a python plugin of QGIS utilizing three.js
library, which provides the capability of exporting terrain data, map
canvas images and vector data to browsers supporting WebGL.
Combining the above Javascript libraries it is possible to perform so-
phisticated 3D georeferenced visualizations with motion effects on 3D
models. However interaction of spatial objects with external feature data
sources towards creating custom geospatial worlds is not directly sup-
ported. O3D14 is also a JS library implemented on top of WebGL, for
creating rich, interactive 3D applications in the browser. OSGJS15 is a
WebGL API for creating 3D applications with Javascript, based on
OpenSceneGraph16 development philosophy. All the above mentioned
components do not maintain the geospatial aspect of the
involved entities.

X3DOM17 is composed of X3D (Extensible 3D Graphics), which de-
notes a standard for declarative 3D graphics and DOM (Document Object
Model), which describes hierarchy and interactivity issues associated
with HTML content. Through this integration (Behr et al., 2009) it is
possible to develop interactive 3D scenes, using a structured, textual
representation. X3D Geospatial is a very recent development which
promises a niche between GIS and 3D graphics and inherent support of
spatial reference systems (Plesch and McCann, 2015). OpenWebGlobe18

is a WebGL virtual globe solution for creating custom applications, large
scale rendering and imagery data display and WebGL Globe19 is a plat-
form for visualizing spatially referenced data and sophisticated cartog-
raphies on the globe. Both of the above mentioned do not deal with
motion effects on spatial objects.

The desired features of a visualization framework, with most impor-
tant being the capability of creating custom 'living' geospatial worlds
seem to be missing and therefore the vision of enriching existing findings
remains unaltered. Though, many of the above mentioned software items

provide significant functionalities the code homogenization and the
integration of patchy clusters of code is a real bottleneck.

3. Method

The method adopted in the present work makes use of surveying
engineering and geometry fundamentals to formulate the algorithmic
base that document minimum functionalities for geospatial visualiza-
tions and motion effects on spatial objects.

3.1. Specifying the geometry

The Geometry should support representation of GIS digital terrain
models which typically consist of a homogeneous grid of points in the 3D
space. In this respect the Geometry, as shown in Fig. 1 is specified by:

� The extend of the grid as this is projected in XY plane provided by the
minimum and maximum X, Y values (Xmin, Ymin) and (Xmax, Ymax),

� The dimensions of the grid as this is projected in XY plane provided by
the number of its columns and rows and

� The elevation values of the projected in XY plane grid points begin-
ning from the top left, crossing the grid by its rows and ending to the
bottom right, provided by a one dimensional table Z[] maintaining
coordinate values.

The Geometry employed is a plane geometry as documented in Three.js
JS library.20

3.2. Locating a point over a motion path

Locating a point over a motion path is the most significant calculation
to deal with when simulating the motion of a moving object between two
given points of a 3D surface. This is because of the continuous changes
that happen to the moving object's orientation as it passes through the
triangles of the 3D surface. Similar calculation is required when, for
example, fitting a polyline on a 3D terrain. At the present work, the 3D
surface employed is regular, however, it should be stressed that such
calculations are generalized in the case of irregular TIN (triangular
irregular networks) surfaces.

In this paragraph what is requested is the location R as expressed by
its coordinates Rx, Ry, Rz, of a point representing the position of an object
in a time instance, moving on a specified path as this is expressed by its
known starting S(Sx, Sy, Sz) and ending E(Ex, Ey, Ez) points. Point R always
belongs to a triangle of the plane geometry, expressed by its vertices
A(Ax, Ay, Az), B(Bx, By, Bz) and C(Cx, Cy, Cz) which is crucial to

Table 1
Features of WebGL based 3D geospatial visualization frameworks.

Name Feature

type visualization Animation motion interactive
motion

integrated geospatial functionalities

spatial
reference

overlaying external feature data
sources

custom geospatial
world

Three.js Library ✓ ✓ ✓ ✓

Cesium Library ✓ ✓ ✓ ✓ ✓

Qgis2threejs QGIS-plugin ✓ ✓ ✓

X3DOM Framework ✓ ✓ ✓ ✓ ✓ ✓ ✓

OSG.js API ✓ ✓ ✓ ✓

O3D Project/
Library

✓ ✓ ✓ ✓

OpenWebGlobe SDK ✓ ✓ ✓ ✓ ✓

WebGL Globe Platform ✓ ✓

13 https://plugins.qgis.org/plugins/Qgis2threejs/.
14 https://code.google.com/p/o3d/.
15 http://osgjs.org/.
16 http://www.openscenegraph.com/.
17 http://www.x3dom.org/.
18 http://www.openwebglobe.org/.
19 https://www.chromeexperiments.com/globe. 20 http://threejs.org/docs/#Reference/Extras.Geometries/PlaneGeometry.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

202

https://plugins.qgis.org/plugins/Qgis2threejs/
https://code.google.com/p/o3d/
http://osgjs.org/
http://www.openscenegraph.com/
http://www.x3dom.org/
http://www.openwebglobe.org/
https://www.chromeexperiments.com/globe
http://threejs.org/docs/#Reference/Extras.Geometries/PlaneGeometry

be identified.

3.2.1. Identifying the containing triangle
The containing triangle ABC will be identified as a function of the

known dimensions of the “Geospatial World” Xmin, Ymin, Xmax, Ymax, col-
umns, rows and table Z[]whichmaintains elevation values (x3.1) and also
the Rx and Ry components of the requested point R (x3.2.3).

Fig. 2 illustrates the world's projection on plane XY. Supposing that
the requested point R is located inside triangle ABC it is possible to reach
point R, by counting the intervening rectangles both horizontally (axis X)
and vertically (axis Y) beginning from the top left one. Then, the number
of the intervening rectangles - in real values – in axes X and Y are:

CountX ¼ Rx � Xmin

Bx � Ax
¼ Rx � Xmin

StepðxÞ ¼ Rx � Xmin

ðXmax � XminÞ=columns

CountY ¼ Ymax � Ry

Ay � Cy
¼ Ymax � Ry

StepðyÞ ¼ Ymax � Ry

ðYmax � YminÞ=rows

where (Bx - Ax) is the measure of the projection of triangle's line AB on
plane XY and represents the grid step Xstep, on axis X, (Ay - Cy) is the
measure of the projection of triangle's line AC on plane XY and represents
the grid step Ystep on axis Y. These steps are equal to the ratio of the map
extend (Xmax-Xmin and Ymax-Ymin) to the grid density (columns and rows) of
the “Geospatial World”.

The above CountX and CountY values reveal the rectangle on which
the requested point R lies on. To find out on which of the two containing
triangles is located (top left or bottom right) the following condition
is applied:

'If the summary of the decimal parts of the above numbers is less
than the unit then the requested point is located on the top left triangle
ABC otherwise on the bottom right A'B'C', where B0 and C0 is identical to
B and C respectively ':

Fig. 1. Plane geometry. Fig. 2. Projection of plane geometry in XY plane.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

203

3.2.2. Calculating elevation Rz
The elevation Rz of the requested point will be calculated as a

function of the vertices of the triangle ABC at which it is located (x3.2.1)
and also its Rx and Ry components (x3.2.3). Two additional points P and
Q, where initiated to assist this calculation and are defined as follows:

� P is the intersection of a line, which is parallel to triangle's hypotenuse
and is crossing point R, with the triangle's side which is parallel to
plane ZY

� Q is the intersection of a line, parallel to triangle's hypotenuse
crossing point R, with the triangle's side which is parallel to plane ZX

Fig. 3 shows the requested point R along with points P and Q on
triangle ABC as well as their projection on plane XY.

In the following documentation a segment is notated either geomet-
rically, e.g. AB, or with its algebraic value, e.g. d(A,B). Triangles RxyR'-
xyQxy and CxyAxyBxy are similar; hence the ratios of the corresponding
sides are equal:

R'xyQxy
AxyBxy

¼ R'xyRxy
AxyCxy

and the value of segment R'xyQxy is:

d
�
R'xy;Qxy

� ¼
������Ry � Ay

� ðBx � AxÞ�
Cy � Ay

�
����� (1)

Therefore, the hypotenuse of the right triangle RxyR'xyQxy (Fig. 4a) is:

dðRxy;QxyÞ ¼

ffi�
Ry � Ay

�2
1þ

ðBx � AxÞ�
Cy � Ay

�
!2!vuut (2)

Similarly the value of segment R00
xyQxy and the hypotenuse of the

right triangle RxyR00
xyPxy (Fig. 4a) is:

d
�
R''xy;Pxy

� ¼ ����ðRx � AxÞ
�
By � Ay

�
ðCx � AxÞ

���� (3)

dðRxy;PxyÞ ¼
ffi
ðRx � AxÞ2

1þ

��
Cy � Ay

�
ðBx � AxÞ

�2
!vuut (4)

Having equations (1) and (3) the values of Qxy, Pxy can be calculated:

Qx ¼ Rx þ d
�
R'xy;Qxy

�
Qy ¼ Ay

Px ¼ Ax

Py ¼ Ry � d
�
R''xy;Pxy

�
Fig. 4 illustrates triangle projections on planes XZ and YZ.
Triangles AxzQ'xzQxz and AxzB'xzBxz are similar; hence the ratios of the

corresponding sides are equal:
QxzQ'xz
AxzQ'xz

¼ BxzB'xz
AxzB'xz

and the value of segment QxzQ'xz is:

dðQxz;Q'xzÞ ¼
����ðQx � AxÞ ðBz � AzÞ

ðBx � AxÞ
����

Finally theQz is obtained by adding the above value at Az, in case Az is
less than Bz, or at Bz in the opposite case:

Qz ¼ Az þ
����ðQx � AxÞ ðBz � AzÞ

ðBx � AxÞ
���� (5)

Qz ¼ Bz þ
����ðQx � AxÞ ðBz � AzÞ

ðBx � AxÞ
���� (6)

Similarly Pz is calculated:

PyzP'yz
CyzP'yz

¼ AyzA'yz
CyzA'yz

⇒d
�
Pyz;P'yz

� ¼
������Py � Cy

� ðAz � CzÞ�
Ay � Cy

�
�����

Pz is calculated by adding the above value at Cz, in case is Cz is less
than Az, or at Az in the opposite case:

Pz ¼ Cz þ
������Py � Cy

� ðAz � CzÞ�
Ay � Cy

�
����� (7)

Pz ¼ Az þ
������Py � Cy

� ðAz � CzÞ�
Ay � Cy

�
����� (8)

Now, having calculated (equations (2) and (4)) the distances between
the projected in plane XY points P, Q and R and also having the z com-
ponents of points Q and P (equations (5)–(8)) it is possible to calculate
the requested Rz component by equalizing the corresponding ratios of the
projected line segments, as shown in Fig. 5:

Rz�Pz
dðRxy ;PxyÞ ¼

Qz�Pz
dðQxy ;PxyÞ and the requested elevation Rz is given by equation

Fig. 3. Points R, P and Q over triangle ABC and their projections on plane XY. Fig. 4. Projections of triangle ABC.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

204

(9) if Pz is less than Qz, or equation (10) otherwise:

Rz ¼ Pz þ
����� d

�
Rxy;Pxy

�ðQz � PzÞ
d
�
Rxy;Qxy

�þ d
�
Rxy;Pxy

�
����� (9)

Rz ¼ Qz þ
����� d

�
Rxy;Pxy

�ðQz � PzÞ
d
�
Rxy;Qxy

�þ d
�
Rxy;Pxy

�
����� (10)

To express elevation Rz as a function of the vertices of the triangle
ABC at which it is located and also its Rx and Ry components the above
equations are transformed by use of equations (2), (4) and (5)–(8) as
follows:

where U1 ¼ Cz if (Cz <¼ Az), Az otherwise and U2 ¼ Az if (Az <¼ Bz),
Bz otherwise.

3.2.3. Calculating Rx and Ry components
Given the starting point S and the ending point E of an object's

movement over a line segment SE and the measure d(S, R) of the distance
traveled, as derived from the speed of the object and the time lapse, the
requested Rx and Ry components, are easily provided by simple geo-
metric formulas, where d(Sxy, Rxy) is the projection of the slant distance
d(S, R) on plane XY, as shown in Fig. 6, below:

Rx ¼ Sx þ d
�
Sxy;Rxy

�
sin
�
a tan

�
Ex � Sx
Ey � Sy

��

Ry ¼ Sy þ d
�
Sxy;Rxy

�
cos
�
a tan

�
Ex � Sx
Ey � Sy

��

To calculate d(Sxy, Rxy) the following assumption is considered: let the
projected on plane XY distance traveled be equal to d(S, R), as shown
in Fig. 7.

Then, the elevation value R'z may be calculated by employing the
algorithm analyzed in paragraph 3.2.2. Subsequently, the slope of the
object's orientation which is the angle formed by SE and plane XY, is
equal to a tan R'z�Sz

dðS;RÞ and finally the requested is:

d
�
Sxy;Rxy

� ¼ dðS;RÞcos
�
a tan

R'z � Sz
dðS;RÞ

�

3.3. Transforming design coordinates to geographic

When defining the dimensions of the 'Geospatial World' the user is
actually defines its spatial reference by setting its XYZ projected coor-
dinate system. Whenever an external spatial dataset is imported, in order
to be designed and overlaid with the “Geospatial World” a trans-
formation of its spatial coordinates to design coordinates (pixels) takes
place. On the other side whenever the user clicks on the “Geospatial
World” in order to specify paths or insert 3D models, a reverse trans-
formation happens. To transform the design coordinates in real world
geographic coordinates the following equations were employed:

Rx ¼
�
RxðpxÞ þ mapWidthðpxÞ

2

�
pixelSizeþ Xmin

Fig. 5. P, Q and R projections on plane XY. Fig. 6. Calculation of Rx and Ry components.

Rz¼
�
U1þ

����
�
Ry�

����
�
Rx�Ax

�
⋅
�
By�Ay

�
ðCx�AxÞ

�����Cy

�
⋅
�
Az�Cz

Ay�Cy

�����
�
þ

������������

" ffi
ðRx�AxÞ2⋅

1þ
�
Cy�Ay

Bx�Ax

�2
!vuut #

⋅
��

U2þ
�����

Rxþ

�����

Ry�Ay

!
⋅
ðBx�AxÞ�
Cy�Ay

�
������Ax

!
⋅
�
Bz�Az

Bx�Ax

������
!
�
�
U1þ

����
�
Ry�

����
�
Rx�Ax

�
⋅
�
By�Ay

�
ðCx�AxÞ

�����Cy

�
⋅
�
Az�Cz

Ay�Cy

�����
�#

0
@

ffi�
Ry�Ay

�2⋅

1þ

ðBx�AxÞ�
Cy�Ay

�
!2!vuut

1
Aþ

0
@

ffi
ðRx�AxÞ2⋅

1þ
��

Cy�Ay

�
ðBx�AxÞ

�2
!vuut
1
A

������������

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

205

Ry ¼
�
RyðpxÞ þ mapHeightðpxÞ

2

�
pixelSizeþ Ymin

Rz ¼ RzðpxÞpixelSize

where pixelSize is easily determined by the “Geospatial World”
dimensions:

pixelSize ¼ Xmax � Xmin

mapWidthðpxÞ
¼ Ymax � Ymin

mapHeightðpxÞ

The above are illustrated in Fig. 8.

3.4. Determining locations inside a polygon

To calculate coordinate values of point locations inside a polygon is
useful in geospatial applications where an area has to be homogeneously
populated with a set of objects (e.g. a cultivated land, a forest etc.). Given
a polygon, firstly a surrounding rectangle is created by considering the
minimum and themaximum values of the polygon vertices xmin, xmax, ymin
and ymax. Then, the density placement of the point locations inside the
polygon area is specified for both X and Y axis by values stepx and stepy
respectively, as depicted in Fig. 9:

Then a number of line segments, depending on the desired density of
the requested locations on Y axis, expressed by stepy, are designed parallel
to X axis, and are defined by the following series of equations:

yi ¼ bi where bi ¼ ymin þ istepy

The intersection of the polygon segments (yj ¼ ajxj þ bj) with the
aforementioned parallel lines, is expressed by the following group
of equations:

yi ¼ yj⇒bi ¼ ajxj þ bj⇒xj ¼ bi � bj
aj

The solutions of the above group of equations provide a number of xj
values which may lead to the calculation of the corresponding yj values.
The results are filtered so that the intersection points belong to the spe-
cific polygon segments and not to the extensions of these segments along
the lines to which they belong. To achieve this, a simple condition is
applied, requiring that the coordinate values of the accepted intersection
points, for each stepy, have to be between the coordinate values of the
respective polygon segment endpoints. A table is created, populated with
pairs of intersection points coordinates for each line parallel to X axis.

From the above mentioned table it is possible to retrieve the pair of
intersection points forming each, parallel to axis X, segment: the n-
segment is formed by the (n*2-2, n*2-1) pair of intersection points. The
pair of x values for every, parallel to X axis, segment is sorted ascending
and finally by considering the desired placement density on the X axis,
expressed by stepx value it is possible to calculate the final locations.

3.5. Calculating orientation changes on moving objects

A moving object is geometrically represented by a model and main-
tains a local coordinate system which is dynamically adjusted so that in
every time instance (rendering), its X axis is always parallel to its
orientation axis, as depicted in Fig. 10:

Orientation changes of a moving object are reflected to rotations
around its axes and therefore occur in the following cases:

(1) Whenever the moving object is turning left or right, this is re-
flected with a rotation around the model's Z axis. In fact, such
turnings occur every time the moving object reaches a vertex of its
motion path. By knowing the coordinates of the vertices of the
motion path (polar or Cartesian) it is easy to calculate the turning
angle φ.

(2) Whenever the moving object is directed upwards or downwards,
this is reflected with a rotation around the model's Y axis. In this
case, the angle of slope φ, which is the angle formed by themodel's

Fig. 7. Assumption considered for calculating d(Sxy, Rxy).

Fig. 8. Transformation between design and geographic coordinates. Fig. 9. Calculating locations inside a polygon.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

206

orientation axis and axis Z of the global coordinate system,
changes. In this case, the slope angle between two time instances
t1 and t2, is identified by use of the fundamental surveying for-
mula, tan ϕ ¼ Rt2z�Rt1zffi

ðRt2x�Rt1x Þ2þðRt2y�Rt1y Þ2
p where the components of

points Rt1 and Rt2 are calculated according to x 3.2. This formula is
used to rotate only alive models (e.g. horse). For inanimate objects
this kind of rotation is covered in the next case.

(3) Whenever the moving object is acting like an airplane that tilts
when turning, this is reflected to a rotation around its model's X
axis. Practically, this kind of rotation happens only in inanimate
models (e.g. car), since the alive objects (e.g. man, horse etc.) are
moving so that the horizontal component of their weight force
tends to be zero. For the inanimate objects this rotation along with
the rotation around their model's Y axis examined in the previous
case, is satisfied through algorithms that provide the vertical
vector of the surface they lie on. Such way these objects are always

moving with their model's Z axis always vertical on the underlying
triangle.

4. Application

The application of the method introduced in the previous paragraph
includes the development of an experimental 'Geospatial World' in order
to simulate on it, placement of stable living or inanimate spatial objects
(e.g. plants, house) or motion of animated moving objects (e.g. animals).

4.1. Creating a 'geospatial world' for testing purposes

The creation of a 'Geospatial World' is the initial action required and
practically includes the development of a 3D terrain upon which so-
phisticated visualizations and animation and motion effects on spatial
objects, take place. Therefore, a testing 'Geospatial World' with an extend
of width 100 and height 50 pixels and dimensions of 2 columns and 2
rows, contains 9 grid points as shown in Fig. 11

By assigning to the fifth point (central point) a random elevation
value and to all other grid points, the value of zero results to the 3D
terrain shown in Fig. 12.

Finally the texture of the geospatial world created is loaded via a
raster image and arranged appropriately by matching its pixels with the
corresponding grid nodes of the geometry (Fig. 13).

To make things simple, it should be noted that the real world di-
mensions of the 'Geospatial World' is 100 m width and 50 m height,

Fig. 10. Rotations around the axes of a model's local coordinate system.

Fig. 11. A 2 � 2 plane geometry containing 9 grid points without elevation values.

Fig. 12. Assigning elevation values.

Fig. 13. Matching a texture simulating the geospatial world.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

207

resulting to a pixel size of 1 m.

4.2. Scaling 3D models to fit world dimensions

Once the 'Geospatial World' is created, next step is to collect the
desired spatial objects that are going to populate it. Plenty of 3D models
representing inanimate or lively animated objects of real world may be
found around 21,22. As expected, the models have been deployed in
arbitrary scale, resulting to a size which is normally disproportional to
the geographic dimensions of the world to which they are about to be
placed. For this reason each time a 3Dmodel is inserted to the 'Geospatial
World' it is resized appropriately in order to occupy a reasonable space
according to its actual dimensions.

To achieve this, a bounding box with dimensions capable to fit the
inserted model is created. For example in the case of a horse the box is
2.5 m wide which corresponds to an average horse length. Then the
model under scaling is inserted so that it is clear with naked eyes if the
size of the model fits within the box. As long as the inserted model ex-
ceeds the predefined dimensions, an automatic size reduction is per-
formed, until it is completely contained within the bounding box as
shown in Fig. 14.

Further techniques for simplifying the related mesh after resizing may
be employed (Luebke, 2003), however such a process is out of the scope
of the present work.

4.3. Placing models at selected locations

Selected locations are considered those resulting from user targeted
or random clicks over the terrain or those imported by an external geo-
spatial file containing point features. Selected locations are then popu-
lated with the desired 3D model (Fig. 15).

Fig. 14. Oversized model exceeding map limits is scaled to fit specified boundary box.

Fig. 15. Placing models at user-selected positions.

Fig. 16. Placing models at specified polylines.

Fig. 17. Populating an area with 3D models.

Fig. 18. Object moving over motion paths.

21 http://blender-archi.tuxfamily.org/Greenhouse.
22 http://www.turbosquid.com.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

208

http://blender-archi.tuxfamily.org/Greenhouse
http://www.turbosquid.com

Such functionality is partially offered by Three.js library functions 'Raycaster'23 and 'Loader'.24 However, in order to store the exact

Fig. 19. Major GIS-based functionalities.

23 http://threejs.org/docs/#Reference/Core/Raycaster. 24 http://threejs.org/docs/#Reference/Loaders/JSONLoader.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

209

http://threejs.org/docs/#Reference/Core/Raycaster
http://threejs.org/docs/#Reference/Loaders/JSONLoader

geographic coordinates of the located models, or in order to place a set of
external geographic points in the appropriate pixels of the terrain, a
transformation of the design coordinates to geographic coordinates and
vice versa is required.

4.4. Placing models along polylines

Specified polylines are considered either those resulting by user clicks
or those inserted via spatial datasets. Given the coordinates of the poly-
line vertices a number of intermediate points are identified and alto-
gether are populated with the desired 3D model (Fig. 16).

4.5. Placing models inside polygons

With this functionality the user is capable of populating a polygon

area, either manually by clicking in the desired polygon vertices or via a
spatial dataset containing polygon features, with models of his choice.
The method introduced in paragraph 3.4 was employed to implement
this functionality (Fig. 17).

4.6. Implementing motion effects

The ultimate geospatial functionality with the seemingly most real-
istic simulation achievement is that of multiple animated 3D models (e.g.
horses and cars) moving over user specified (or externally predefined)
motion paths (Fig. 18). This functionality is implemented by use of the
methodological approach introduced for locating a point over a motion
path (x 3.2) combined with that for calculating changes in the orientation
of a moving object (x 3.5). Especially in the case of inanimate objects (e.g.
car) the composite rotation around their model's X and Y axis is

Fig. 20. Some snapshots of the demonstrative 'Geospatial World'.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

210

implemented by employing “look at” and “up” properties of a 3D object
provided by three.js 25.

4.7. Incorporating GIS-based functionalities

The above deployed individual functionalities have to be offered in a
way that the 'Geospatial World' creator can combine different 3D model
types with various motion effects on dynamically defined paths. Major
GIS functionalities are employed for this reason providing typical capa-
bilities of importing feature layers, defining coordinate system, speci-
fying points, paths and areas and overlaying the thematic layers.
Furthermore, capabilities of manipulating attribute tables and managing
3D models are offered as shown in Fig. 19.

4.8. Combining all to make living 'geospatial worlds'

All functionalities so far implemented provide excellent capabilities
for creating special 'Geospatial Worlds' with animated or fixed, stable or
moving 3D spatial objects (Fig. 20). To boost up performance, object
pooling pattern (Kircher and Jain, 2002) was adopted.

To assist demonstration of the presented work a video has been
prepared and is available at:

https://www.youtube.com/watch?v¼f5x-
XRCxml8&feature¼youtu.be.

5. Discussion and further developments

The present work employed the technologies related to 3D computer
graphics and the existing visualization frameworks and libraries to ach-
ieve sophisticated geospatial world simulations associated with major
GIS functionalities. There are of course several other interrelated issues
beyond the scope and the central intentions of the whole venture that
raise reasonable concerns. First of all, the algorithmic calculations were
performed over a regular 3D terrain while the general case would be to be
performed over a TIN. In addition there are many interesting level of
detail (LOD) terrain algorithms, such as ROAM (Turner, 2000), for
creating a land which is a major issue in 3D virtual worlds. This paper is
not focused on providing the best algorithm for terrain creation. How-
ever, Three.js library supports almost all types of geometries and some of
them can implement various algorithms including ROAM.26 There are
also various other interesting algorithms for searching the location of a
point, calculating distances, getting the bounding box of a randomly
positioned point, etc27 and most of them have been written in C pro-
gramming language for its memory handling capabilities. The presented
is a purely surveying approach employing basic trigonometry for calcu-
lating distances, rotations etc., and aimed to make these algorithms
available in the JS community.28 The selection of JS was based due to its
ability to perform directly over the web and be interpreted just in time by
the web browser. Testing and comparing the presented algorithms with
other existing and/or transforming the last mentioned in JS, is a real
challenge and interesting subject of a future work, dealing with time
processing issues. Additional similar issues, concerning processing ca-
pacity and visualization efficiency may be examined. For example,
designing a complicated scene with plenty of moving objects after
locating their position in each rendering is a costly process. Resizing
techniques based on the locations of objects with regard to the gravity
center, or bilinear interpolation would simplify things. Other simplifi-
cations processes may increase processing capacity such as for example
mesh simplification after 3D models resizing.

A significant advantage of the above mentioned technologies

coupling is the interaction between external feature layers (e.g. areas,
paths, points in KML format) with 3D model layers. For example the
homogeneous filling of spatial objects in a polygon area may not be
actually met. In such real cases a further subdivision of the area in sub-
areas with different density values for the requested 3D model, specified
by an external feature layer may result to more realistic views of the
geospatial world.

Finally, the extended geospatial user capabilities may be proved
utilitarian for a wide range of multi-disciplinary activities which may be
offhandedly classified into two general sections: a) navigation, and b)
simulation. Regarding the navigational activities these may include vi-
sualizations of natural resources or historical events for educational
purposes. For example, one could demonstrate troops movements be-
tween involved countries, during a significant World War II fight, by
simply overlaying multiple layers of 3D military-related models moving
over the globe in specified paths. Simulation activities may include
modeling phenomena with significant research interest for geosciences
such as those concerning floods, landslides, earthquakes etc. For
example, the simulation of a strong rainfall and the progressive covering
of the basin with water and its potential overflow, or the fall of a rock
from a hill due to a landslide generate extreme geospatial visualization,
animation and motion challenges. However to implement this, requires a
significant enrichment of the existing JS libraries with special function-
alities provided by physics engines, and this reveals an additional chal-
lenge of the presented work.

Acknowledgements

The authors wish to acknowledge financial support provided by the
Research Committee of the Technological Educational Institute of Cen-
tral Macedonia under grant SAT/GS/171214-263/23.

References

Batty, M., Hudson-Smith, A., Milton, R., Crooks, A., 2010. Map mashups, Web 2.0 and the
GIS revolution. Ann. GIS 16 (1), 1–13.

Behr, J., Eschler, P., Jung, Y., Z€ollner, M., 2009. X3DOM: a DOM-based HTML5/X3D
integration model. In: Spencer, S.N. (Ed.), Proceedings of the 14th International
Conference on 3D Web Technology. ACM, Darmstadt, Germany. New York,
pp. 127–135, 16-17 June 2009.

Billen, M.I., Kreylos, O., Hamann, B., Jadamec, M.A., Kellogg, L.H., Staadt, O.,
Sumner, D.Y., 2008. A geoscience perspective on immersive 3D gridded data
visualization. Comput. Geosci. 34 (9), 1056–1072.

Christen, M., Nebiker, S., Loesch, B., 2012. Web-based large-scale 3D-geovisualisation
using WebGL: the OpenWebGlobe project. Int. J. 3 D Inf. Model. (IJ3DIM) 1 (3),
16–25.

Eha, B., 2013. An Accelerated History of Internet Speed (Infographic). Enterpreneur.
Available from: http://www.entrepreneur.com/article/228489. (Accessed 7
November 2015).

Evangelidis, K., Ntouros, K., Makridis, S., Papatheodorou, C., 2014. Geospatial services in
the cloud. Comput. Geosci. 63, 116–122.

Gesqui�ere, G., Manin, A., 2012. 3D visualization of urban data based on CityGML with
WebGL. Int. J. 3 D Inf. Model. (IJ3DIM) 1 (3), 1–15.

Haklay, M., Singleton, A., Parker, C., 2008. Web mapping 2.0: the neogeography of the
GeoWeb. Geogr. Compass 2 (6), 2011–2039.

Hobona, G., James, P., Fairbairn, D., 2006. Web-based visualization of 3D geospatial data
using Java3D. Comput. Graph. Appl. IEEE 26 (4), 28–33.

Huang, B., Jiang, B., Li, H., 2001. An integration of GIS, virtual reality and the internet for
visualization, analysis and exploration of spatial data. Int. J. Geogr. Inf. Sci. 15 (5),
439–456.

Huang, B., Lin, H., 2002. A Java/CGI approach to developing a geographic virtual reality
toolkit on the internet. Comput. Geosci. 28 (1), 13–19.

Kahkonen, J., Lehto, L., Kilpelainen, T., Sarjakoski, T., 1999. Interactive visualisation of
geographical objects on the internet. Int. J. Geogr. Inf. Sci. 13 (4), 429–438.

Kircher, M., Jain, P., 2002. Pooling pattern. In: Proceedings of the 7th European
Conference on Pattern Languages of Programms (EuroPLoP '2002), 3–7 July 2002.
UVK - Universitaetsverlag Konstanz, Irsee, Germany, ISBN 978-3-87940-784-2, 2003.

Kr€amer, M., Gutbell, R., 2015. A case study on 3D geospatial applications in the web using
state-of-the-art WebGL frameworks. In: Proceedings of the 20th International
Conference on 3D Web Technology. ACM, Heraklion, Greece. New York,
pp. 189–197, 18–21 June 2015.

Krooks, A., Kahkonen, J., Lehto, L., Latvala, P., Karjalainen, M., Honkavaara, E., 2014.
WebGL visualisation of 3D environmental models based on Finnish open geospatial
data sets. ISPRS Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. 1, 163–169.

Luebke, D.P., 2003. Mesh Simplification. Level of Detail for 3D Graphics. Morgan
Kaufmann, pp. 38–44.

25 http://threejs.org/docs/#Reference/Core/Object3D.
26 https://threejs.org/docs/index.html#Reference/Core/BufferGeometry.
27 https://www.geometrictools.com/Samples/Geometrics.html.
28 https://github.com/Prieston/3dav.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

211

https://www.youtube.com/watch?v=f5x-XRCxml8&feature=youtu.be
https://www.youtube.com/watch?v=f5x-XRCxml8&feature=youtu.be
https://www.youtube.com/watch?v=f5x-XRCxml8&feature=youtu.be
https://www.youtube.com/watch?v=f5x-XRCxml8&feature=youtu.be
https://www.youtube.com/watch?v=f5x-XRCxml8&feature=youtu.be
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref1
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref1
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref1
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref2
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref3
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref3
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref3
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref3
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref4
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref4
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref4
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref4
http://www.entrepreneur.com/article/228489
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref6
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref6
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref6
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref7
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref7
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref7
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref7
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref8
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref8
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref8
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref9
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref9
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref9
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref10
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref10
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref10
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref10
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref11
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref11
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref11
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref12
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref12
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref12
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref13
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref13
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref13
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref13
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref14
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref15
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref15
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref15
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref15
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref16
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref16
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref16
http://threejs.org/docs/#Reference/Core/Object3D
https://threejs.org/docs/index.html#Reference/Core/BufferGeometry
https://www.geometrictools.com/Samples/Geometrics.html
https://github.com/Prieston/3dav

Oxera, 2013. What is the economic impact of geoservices? Prepared for Google. Available
from: http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-
the-economic-impact-of-Geo-services.aspx. (Accessed 7 November 2015).

Plesch, A., McCann, M., 2015, June. The X3D geospatial component: X3DOM
implementation of GeoOrigin, GeoLocation, GeoViewpoint, and
GeoPositionInterpolator nodes. In: Proceedings of the 20th International Conference
on 3D Web Technology. ACM, pp. 31–37.

Resch, B., Wohlfahrt, R., Wosniok, C., 2014. Web-based 4D visualization of marine geo-
data using WebGL. Cartogr. Geogr. Inf. Sci. 41 (3), 235–247.

Rumor, M., Roccatello, E., Scott�a, A., 2014. A standard-based framework for real-time 3D
large-scale geospatial data generation and visualisation over the web. In: Lee, D.J.,
Dias, E., Scholten, H.J. (Eds.), Geodesign by Integrating Design and Geospatial
Sciences. Springer International Publishing, Switzerland, pp. 259–269.

Turner, B., 2000, April 3. Real time dynamic LOD terrain render with ROAM. Retrieved
from http://www.gamasutra.com/view/feature/131596/realtime_dynamic_level_of_
detail_.php. .

Vance, T.C., Merati, N., Moore, C., 2005. Integration of Java and GIS for visualization and
analysis of marine data. Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci.
ISPRS 239–281.

K. Evangelidis et al. Computers and Geosciences 111 (2018) 200–212

212

View publication statsView publication stats

http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-services.aspx
http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-services.aspx
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref18
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref18
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref18
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref18
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref18
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref19
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref19
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref19
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref20
http://www.gamasutra.com/view/feature/131596/realtime_dynamic_level_of_detail_.php
http://www.gamasutra.com/view/feature/131596/realtime_dynamic_level_of_detail_.php
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref22
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref22
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref22
http://refhub.elsevier.com/S0098-3004(17)31139-1/sref22
https://www.researchgate.net/publication/321201556

	3D geospatial visualizations: Animation and motion effects on spatial objects
	1. Introduction
	2. Related work
	3. Method
	3.1. Specifying the geometry
	3.2. Locating a point over a motion path
	3.2.1. Identifying the containing triangle
	3.2.2. Calculating elevation Rz
	3.2.3. Calculating Rx and Ry components

	3.3. Transforming design coordinates to geographic
	3.4. Determining locations inside a polygon
	3.5. Calculating orientation changes on moving objects

	4. Application
	4.1. Creating a 'geospatial world' for testing purposes
	4.2. Scaling 3D models to fit world dimensions
	4.3. Placing models at selected locations
	4.4. Placing models along polylines
	4.5. Placing models inside polygons
	4.6. Implementing motion effects
	4.7. Incorporating GIS-based functionalities
	4.8. Combining all to make living 'geospatial worlds'

	5. Discussion and further developments
	Acknowledgements
	References

