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Abstract In [1] and [2] a new family of companion forms associated to a regular poly-

nomial matrix T (s) has been presented, using products of permutations of n elementary

matrices, generalizing similar results presented in [3] where the scalar case was consid-

ered. In this paper, extending this “permuted factors” approach, we present a broader

family of companion like linearizations, using products of up to n(n− 1)/2 elementary

matrices, where n is the degree of the polynomial matrix. Under given conditions, the

proposed linearizations can be shown to consist of block elements where the coefficients

of the polynomial matrix appear intact. Additionaly we provide a criterion for those

linearizations to be block symmetric. We also illustrate several new block symmetric

linearizations strictly equivalent to the original polynomial matrix T (s) where in some

of them, the constraint of nonsingularity of the constant term and the coefficient of

maximum degree is not a prerequisite.

Keywords polynomial matrices · linearizations · realizations · companion matrix ·
linear systems

1 Introduction

Polynomial matrices arise in the study of several problems in the analysis and syn-

thesis of linear multivariable systems (see for instance [13]). A very common form of

representation of dynamical linear systems (see [12]) is the so called auto regressive

(AR) representation

Σ : T (ρ)ξ = 0, (1)
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where is either the differential or the forward difference operator, T (ρ) is a polynomial

matrix and ξ is the vector valued pseudostate. The properties of the dynamical system

(1) are closely related to the structural invariants of the polynomial matrix

T (s) = Tns
n + Tn−1s

n−1 + ...+ T0, (2)

where Ti ∈ Cp×p. A polynomial matrix T (s) is said to be regular iff detT (s) 6= 0 for

almost every s ∈ C. In practical applications, such as the eigenvalue problem of higher

order systems, it is preferable to linearize the polynomial matrix T (s) into an equivalent

matrix pencil L(s) = sL1 − L0 where Li ∈ Cnp×np. Strictly speaking, linearizations

share the same finite and infinite divisor structure with the original polynomial matrix.

Several linearizations exist in the literature ([6], [11], [12], [5], [1], [2], [10], [8], [9]), the

most common ones being linearizations using companion matrices and especially the

first and second companion forms. Companion linearizations are linearizations where

Li are directly composed as block matrices using the coefficients Ti. For instance, the

first companion linearization is P (s) = sP1 − P0 where

P1 =


Ip 0 · · · 0

0 Ip
. . .

...
...

. . .
. . . 0

0 · · · 0 Tn

 , P0 =


0 Ip · · · 0
...

. . .
. . .

...

0 · · · 0 Ip
−T0 −T1 · · · −Tn−1

 (3)

and the second one P̂ (s) = sP1 − P̂0 where

P̂0 =


0 · · · 0 −T0

Ip
. . .

...
...

...
. . . 0 −Tn−2

0 · · · Ip −Tn−1

 . (4)

Several authors have proposed other linearizations of a polynomial matrix T (s). In [11],

[6] two vector spaces of linearizations have been proposed and a convenient method for

constructing them using shifted sums was presented (additive construction approach).

The intersection of those vector spaces was proved to contain block symmetric lin-

earizations. In [1] and [2], a family of linearizations was introduced using products of

permutations of n elementary matrices (permuted factors approach), some of which

proved to be also block symmetric. Notably, this approach has been shown to be ex-

tensible in the case of multivariate polynomial matrices in [7].The two approaches

described so far provide different linearizations, but in both cases, crucial role is played

by the first and second companion linearizations. A third approach for the construc-

tion of block symmetric linearizations appeared in [8], [9] and [10] using products of

the first or second companion linearizations with a suitable block symmetric matrix

(multiplicative approach).

In this paper we generalize the “permuted factors” approach using products of more

than n elementary matrices, thus constructing new companion like linearizations. Note

that from [1] and [2], the elementary matrices involved are

Ak =


Ip(k−1) 0 · · ·

0 Ck
. . .

...
. . . Ip(n−k−1)

 , k = 1, 2, . . . , n− 1, (5)
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Ck =

[
0 Ip
Ip −Tk

]
(6)

and

A0 = diag{−T0, Ip(n−1)}. (7)

Also Ai, i = 1, ..., n − 1 are always nonsingular and A0 is nonsingular if and only if

T0 is respectively nonsingular. A central role in this process is played by the newly

introduced notion of operation free products of elementary matrices. Operation free

products are essentially products resulting in block matrices containing only trivial

blocks such as 0 or Ip and Ti. By avoiding operations between the coefficients Ti, it

is guaranteed that the numerical data of the original problem are not perturbed. This

is the case in the two standard companion linearizations, the ones in [1], [2] and also

in those in [8], [9] and [10]. Operation free products can be viewed as a special case of

intrinsic products in [4]. Characterizations of operation free products are given both in

terms of adjacency and the existence of certain types of standard forms.

The rest of the paper is outlined as follows. In section 2, we study the family of

matrices that arise using products of at most n(n−1)/2 elementary matricesAi and give

necessary and sufficient conditions for those products to be operation free. In section

3, we introduce a new family of companion like linearizations, whose matrices are

operation free products. This family is proved to include the linearizations of [1], [2] but

also the ones produced using the multiplicative “approach” in [8], [9] and [10]. Moreover,

some of the linearizations of a particularly interesting block symmetric structure are

pointed out, where in some of them, the constraint of nonsingularity of the constant

term and the coefficient of maximum degree is not a prerequisite.

2 Operation free products of elementary matrices

In order to study the products of elementary matrices Ai, we will need the following

introductory definitions and results.

Definition 1 Let I = (i1, i2, . . . , im) be an ordered tuple containing indices from

{0, 1, 2, . . . , n− 1}. Then AI := Ai1Ai2 · · ·Aim .

Lemma 1 [3],[1] Let i, j ∈ {0, 1, 2, . . . , n − 1}. Then AiAj = AjAi if and only if

|i− j| 6= 1.

Definition 2 Let I1 and I2 be two tuples. I1 will be termed equivalent to I2 (I1 ∼ I2)

if and only if AI1 = AI2 .

It is easy to see that ∼ as defined above is an equivalence relation.

Using Lemma 1, we can easily deduce that I1 ∼ I2 if and only if I1 can be obtained

from I2 using a finite number of allowable (in the sense of Lemma 1) transpositions.

It is clear that every equivalent class of index tuples defines uniquely one product of

elementary matrices and vice versa.

Definition 3 Let k, l ∈ Z with k ≤ l. Then we define

(k : l) :=

{
(k, k + 1, ..., l), k ≤ l

∅, k > l
(8)
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Remark 1 According to the above definition, if k1 > l and k2 > l, then both index

tuples (k1 : l) and (k2 : l) correspond to the empty index tuple. To avoid this notational

ambiguity in what follows, we shall adopt the notation (∞ : l) for any tuple of the form

(k : l) having k > l where applicable.

Definition 4 Let I1 and I2 be two tuples. By (I1, I2) we denote the juxtaposition of

I1 and I2.

In view of the previous definition it is clear that

A(I1,I2) = AI1AI2 .

In general juxtaposition of index tuples is not commutative, i.e. (I1, I2) � (I2, I1).

Furthermore, by noticing that A(I1,∅) = AI1 we shall adopt the convention

A∅ = Inp.

Definition 5 Given an index tuple I = (i1, i2, . . . , im). We define the reverse tuple

(im, im−1, . . . , i1), which will be denoted as Ī.

Clearly, the reverse operator satisfies the following property

(I1, I2) ∼ (Ī2, Ī1).

We now introduce a very important notion that will play a central role for the

construction of linearizations proposed in the next section.

Definition 6 A product of two elementary matrices Ai, Aj with i, j ∈ {0, 1, 2, . . . , n−
1} will be called operation free iff the block elements of the product are either 0, Ip or

−Ti (for generic matrices Ti).

Obviously a product consisting of just one term Ai is in the above sense operation

free.

Lemma 2 The product AiAi is not operation free for i = 0, ..., n− 1.

Proof It is easy to see that for i = 0

A0A0 =

[
T 2

0

Ip(n−1)

]
and for 0 < i ≤ n− 1

AiAi =


Ip(i−1)

Ip −Ti
−Ti T 2

i + Ip
Ip(n−i−1)

 .
The definition of operation free products can be inductively extended to products

of more than two elementary matrices. However, it can be easily confirmed that the

product of two operation free products is not necessarily operation free itself. This is

the case in the second product in the following lemma.
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Lemma 3 The product AiAi+1Ai is operation free, while Ai+1AiAi+1 is not for i =

0, ..., n− 2.

Proof For i = 0

A0A1A0 =

 0 −T0

−T0 −T1

Ip(n−2)


is operation free. The second product for i = 0 is

A1A0A1 =

 Ip −T1

−T1 T
2
1 − T0

Ip(n−2)


which is not operation free for generic matrices Ti. For 0 < i ≤ n− 2

AiAi+1Ai =


Ip(i−1)

0 0 Ip
0 Ip −Ti
Ip −Ti −Ti+1

Ip(n−i−2)


is obviously operation free, while

Ai+1AiAi+1 =


Ip(i−1)

0 0 1

0 1 −Ti+1

1 −Ti+1 T
2
i+1 − Ti

Ip(n−i−2)


is not.

An important property of non operation free products is that they can not be

extended to operation free ones as shown below.

Lemma 4 Let M be an index tuple such that AM is not operation free. Then for any

two other index tuples L and R, ALAMAR is not operation free.

Proof Assume that AM is not operation free and let Mij ∈ Cp×p, i, j = 1, 2, . . . , n be

its block elements. Since AM is a product of elementary matrices Ak, k = 0, 1, . . . , n−1

defined by (7), (5), it is convenient to set Sk = −Tk, only to make it easier to see that

if operations occur in an element Mij , these can only be additions and multiplications

between blocks 0, Ip and (generic) Sk’s.

We show first that AMAR is not operation free. Let R = (r1, r2, . . . , rv) and

consider the product AMAr1 . In view of the definition of the elementary matrices (7)

and (5) we distinguish two cases

– If r1 = 0, the block columns 2 to n ofAM remain intact after the post-multiplication

by A0, while the blocks of the first column become Mi,1S0. Obviously, if any of the

block elements in columns 2 to n is not operation free in AM, so will be in AMA0.

On the other hand, if operations occur in some element Mi,1, in the first column

of AM, these can only be additions and multiplications between blocks 0, Ip and

Sk. Hence, Mi,1S0 will still involve operations (for generic S0).
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– If r1 = 1, 2, . . . , n − 1, by carrying out the multiplication AMAr1 we notice that

the effect of the post multiplication by Ar1 , is only limited to block columns r1 and

r1 + 1. Particularly the block elements Rij of AMAr1 , have the form

Rij =


Mij , j 6= r1 and j 6= r1 + 1

Mi,r1+1, j = r1
Mi,r1 +Mi,r1+1Sr1 , j = r1

In view of the above, if operations occur in any column, other than r1 in AM, so will

be in AMAr1 and there is nothing to prove further. Assume now that operations

occur only in block column r1 of AM and consider an element Mi,r1 in this column

which containing operations. Since, operations occur only in block column r1 of

AM, Mi,r1+1 is operation free and it may take one of the values 0, Ip or Sj for

some j. Depending on the value of Mi,r1+1 we have

– If Mi,r1+1 = 0 then Ri,r1+1 = Mi,r1 so operations still occur in Ri,r1+1.

– If Mi,r1+1 = Ip then Ri,r1+1 = Mi,r1 +Sr1 . Since, Mi,r1 involves only additions

and multiplications of 0, Ip and Sk’s, the existence of a term of the form −Sk in

Mi,r1 , is not possible. Thus, the generic block Sr1 cannot cause a cancellation

in Ri,r1+1, since this would require the presence of a term of the form −Sr1 in

Mi,r1 . Thus, Mi,r1+1 is not operation free.

– If Mi,r1+1 = Sj then Ri,r1+1 = Mi,r1 + SjSr1 . Similarly to the previous case,

SjSr1 can only cancel a term of the form −SjSr1 in Mi,r1 , which is can not

exist as explained above. Again, Mi,r1+1 is not operation free.

So far we have shown that AMAr1 can not be operation free for any r1. Applying

successively the same argument for the multiplication AMAr1 by Ar2 and respectively

for the productAMAr1Ar2 byAr3 etc., we conclude thatAMAr1Ar2 . . . Arv = AMAR
is not operation free.

Using a similar procedure we can show the corresponding result for the pre-multiplication

of AMAR by AL, which finally proves that ALAMAR is not operation free.

An immediate consequence of the above Lemma is that if AI is an operation free

product of elementary matrices andM is any index tuple such that I = (L,M,R) for

some tuples L,R, then AM is operation free.

We now introduce the notion of block transposition of a block matrix. If A =

[Aij ]n×m is block matrix consisting of block elements Aij ∈ Cp×p, then its block

transpose is defined by

AB = [Aji]m×n

Obviously, block transposition coincides with ordinary transposition for matrices con-

sisting of scalar elements Aij . It is important to notice that the well known property

(AB)T = BTAT , does not hold in general in the case of block transposition. However,

this property holds for operation free products of elementary matrices as shown in the

following.

Lemma 5 Let AI , AJ be two products of elementary matrices whose product AIAJ
is operation free. Then

(AIAJ )B = ABJA
B
I (9)
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Proof As a direct consequence of Lemma 4, if AIAJ is operation free then AI , AJ will

be operation free as well. Let AI = [Lij ]n×n, AJ = [Rij ]n×n, (AIAJ )B = [Pij ]n×n
and ABJA

B
I = [Qij ]n×n where Lij , Rij , Pij and Qij are the block elements of AI , AJ ,

(AIAJ )B and ABJA
B
I respectively. It can be easily seen that

Pij =

n∑
k=1

LjkRki, Qij =

n∑
k=1

RkiLjk

Obviously, if the block elements Ljk, Rki commute for every i, j, k,, then Pij = Qij
and (9) has been shown. Since both AI , AJ are operation free, their block elements

Ljk, Rki can be either 0, Ip or −Tv. Clearly, 0 and Ip commute with every matrix, so

Ljk, Rki do commute if at least one of them is either 0, Ip. If on the other hand, both

Ljk, Rki are of the form −Tv and −Tµ, which do not commute in general. However,

this last case can not occur since AIAJ has been assumed to be operation free and the

presence of a term of the TvTµ in some Pij , can not be canceled (for details see proof

of Lemma 4). Hence, if AIAJ is operation free Ljk, Rki commute for every i, j, k and

(9) has been proved.

Using associativity, the result of Lemma 5 can be extended to products of more

than two factors. Making use of this extended version of Lemma 5 and taking into

account the fact that elementary matrices are block symmetric (that is ABk = Ak), we

can easily confirm that if AI is an operation free product then

AĪ = ABI (10)

which also an operation free product. Note that an operation free product AI is block

symmetric if and only

AI = ABI = AĪ

i.e. if and only if

I ∼ Ī. (11)

Lemma 6 The product A(k:l) is of the form

A(k:l) =





Ik−1

01×(l−k+1) I

−Tk

Il−k+1

...

−Tl
In−l−1


, k > 0


01×l −T0

−T1

Il
...

−Tl
In−l−1

 , k = 0

, k ≤ l ≤ n− 1 (12)

where the dimensions appearing in the zero and identity matrices are block dimensions.
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Proof We first deal with the case k > 0.We shall use induction on l. For l = k,

A(k:k) = Ak which is in accordance with (12). Assuming that (12) holds for l we shall

prove that A(k:l+1) is also given by (12). Indeed

A(k:l+1) = A(k:l)Al+1

=



Ik−1

01×(l−k+1) I

−Tk

I(l−k+1)

...

−Tl
In−l−1




Il
0 I

I −Tl+1

In−l−2



=



Ik−1

01×(l−k+2) I

−Tk

I(l−k+2)

...

−Tl+1

In−l−2


which is in conforms with (12). The case k = 0 follows easily using the fact that

A(0:l) = A0A(1:l).

Notice that the matrices Ti appear in the (l + 1) block column while in each of

the remaining block columns appear exactly one identity matrix and zeros. Note also

that every product A(k:l) is operation free. The following Theorem provides a canonical

form for the expression of products of elementary matrices Ai.

Theorem 1 Every product of the form

0∏
i=n−1

A(ci:i), for ci ∈ (0 : i) ∪ {∞} (13)

is an operation free product. Form (13) of a product of elementary matrices will be

called column standard form.

Proof In order to prove the theorem we will use induction on n in (13).

The theorem obviously holds for n = 1.

Assume that for some n > 1, the product
0∏

i=n−1
A(ci:i) is operation free , for ci ∈ (0 :

i) ∪ {∞}.
For dimension n + 1 we define Āi, i = 0, ..., n the corresponding elementary matrices.

We will prove that
0∏
i=n

Ā(ci:i), for ci ∈ (0 : i) ∪ {∞} is operation free.

0∏
i=n

Ā(ci:i) = Ā(cn:n)

0∏
i=n−1

Ā(ci:i) = Ā(cn:n)

0∏
i=n−1

Ā(ci:i) =

= Ā(cn:n)

0∏
i=n−1

diag{A(ci:i), Ip}.
(14)
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From Lemma 6 follows that Ā(cn:n) has Ti ’s only in the last column. Due to the block

diagonal structure of
0∏

i=n−1
diag{A(ci:i), Ip}, we can conclude that (14) is operation

free.

Using the notational convention of remark 1, in the choice of base indices ci, the

products of the form (13) are completely characterized by the ordered set of indices

C = (cn−1, cn−2, . . . , c0).

Example 1 Let T (s) a p× p polynomial matrix of degree n = 6. Consider the product

Ã = (A3A4A5)(A3A4)(A3)(A0A1A2)(A0). (15)

Rewriting Ã as

Ã = A(3:5)A(3:4)A(3:3)A(0:2)A(∞:1)A(0:0), (16)

we notice that the above product is in the standard column form described in (13)

and thus it is operation free. The matrix Ã is characterized by the base index tuple

C = (3, 3, 3, 0,∞, 0).

Note that the form of the product (16) indicates the block column of Ã on which

an element Ti resides (see proof of Theorem 1). The i-th column will contain exactly

those Ti’s with i ∈ (ci−1 : i− 1) corresponding to the indices in the product (16). This

fact is summarized in the following table.

# column 1 2 3 4 5 6

Ti T0 T0, T1, T2 T3 T3, T4 T3, T4, T5
(17)

After carrying out the products, we have that

Ã =


0 0 −T0 0 0 0

−T0 0 −T1 0 0 0

0 0 0 0 0 Ip
0 0 0 0 Ip −T3

0 0 0 Ip −T3 −T4

0 Ip −T2 −T3 −T4 −T5

 .

Example 2 Let T (s) a p × p polynomial matrix of degree n = 4. The matrix that

corresponds to C = (0, 0, 0, 0) is the block symmetric matrix

Ã =

0∏
i=n−1

A(0:i) =


0 0 0 −T0

0 0 −T0 −T1

0 −T0 −T1 −T2

−T0 −T1 −T2 −T3

 .
Example 3 The matrix with column standard form corresponding to C = (0,∞,∞,∞, ...∞)

is the companion matrix P̂0 in (4) while the one corresponding to C = (n−1, ..., 2, 1, 0)

is the companion matrix P0 in (3).

Lemma 7 There exist (n+ 1)! distinct products of the form (13).
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Proof Each product of the form (13) is completely characterized by the ordered set of

indices C = (cn−1, cn−2, . . . , c0). The index cn−1 ranges from 0 to n − 1, i.e. it may

take n distinct values, but we also allow it to take the value ∞ (which corresponds to

the empty set). Totally the index cn−1 may take n+ 1 distinct values. Similarly, cn−2

may take n distinct values, cn−3, n − 1 distinct values and so on. Thus, there exist

(n+ 1)! distinct choices of C.

We introduce now the successor infix property of index tuples, which plays a crucial

role in the characterization of operation free products as shown in the sequel.

Definition 7 (Successor Infix Property (SIP)) Let I = (i1, i2, . . . , ik) be an index

tuple. I will be called successor infixed if and only if for every pair of indices ia, ib ∈ I,
with 1 ≤ a < b ≤ k, satisfying ia = ib, there exists at least one index ic = ia + 1, such

that a < c < b.

According to the above definition, if I satisfies the SIP, then for any partitioning

of I = (L,M,R) the tuples L,M and R will also satisfy the SIP. It is also clear from

the above definition that SIP imposes certain limitations on the number of occurrences

of each index in the tuple, depending on its value. For instance, since n − 1 is the

greatest amongst all indices, it should appear only once in the tuple. Consequently,

there can be at most two instances of the index n− 2, since the SIP requires them to

be separated by an index of value n − 1 and the maximal index appears only once.

Proceeding inductively it is easy to see that an SIP index tuple corresponding to a

polynomial matrix of degree n, can have at most n(n+1)/2 indices. Before proceeding

to the main result of this section, we state and prove an auxiliary lemma.

Lemma 8 Let I be an index tuple satisfying the SIP and let m be the maximal index

in I.Then there exists an index cm ≤ m such that

I ∼ ((cm : m), I′) (18)

with m /∈ I′.

Proof Since I satisfies the SIP and m is its maximal index, there can be only one

occurrence of m in I. Otherwise, between any two instances of m there should be an

index with value m+ 1, which contradicts the maximality of m. Since there is only one

instance of m we can partition I as follows

I = (L0,m,R0)

where m /∈ L0 and m /∈ R0. Taking into account the SIP we notice that there can be

at most one occurrence of the index m− 1 in each of the tuples L0,R0. Otherwise, if

m− 1 appears twice (or more) in either of the tuples L0,R0, the SIP is violated since

there is no index m in L0 and R0. We distinguish two cases:

– If m − 1 /∈ L0, then according to Lemma 1, m commutes with every index in L0

and we can write

I ∼ (m,L0,R0)

In this case (18) has been obtained, by setting cm = m, I′ = (L0,R0) and noticing

that m /∈ L0,R0.
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– If m − 1 ∈ L0, using the fact that m − 1 appears at most once in L0, we can

partition L0 = (L1,m − 1,L′0) so that m − 1 /∈ L1 and m − 1 /∈ L′0. Now m

commutes with the elements of L′0 and we can write I ∼ (L1,m − 1,m,L′0,R0).

Thus setting R1 = (L′0,R0) we can write

I ∼ (L1, (m− 1 : m),R1)

where m,m− 1 /∈ L1, m /∈ R1 and because of the SIP, m− 2 appears at most once

in L1.

Proceeding accordingly, depending on the existence of m− 2 in L1 and taking into

account the SIP, we can write either

I ∼ ((m− 1 : m),L1,R1)

which gives the form (18) for cm = m− 1, I′ = (L1,R1) (notice that m /∈ L1,R1) or

I ∼ (L2, (m− 2 : m),R2).

In view of the above reduction, it is clear that Li+1 has strictly less elements than

Li.Thus the same procedure can be applied for a finite number of times, until Li
vanishes, so that (18) is obtained.

Theorem 2 Let I be an index tuple. The following statements are equivalent

1. AI is operation free

2. I satisfies the SIP

3. AI can be written in the column standard form (13) as
0∏

i=n−1
A(ci:i), for ci ∈ (0 :

i) ∪ {∞}.

Proof (1 ⇒ 2) Assume AI is operation free and that I does not satisfy the SIP. We

will show that this is a contradiction. Choose the minimum index i0 ∈ I, not satisfying

the SIP. Furthermore, we can always choose two i0 ∈ I, such that I can be partitioned

as follows

I = (L, i0,M, i0,R) (19)

with M some index set with i0, i0 + 1 /∈M. Then we distinguish two cases:

– i0 − 1 /∈ M. Then by Lemma 1, i0 commutes with every element of M and thus

can write I ∼ (L,M, i0, i0,R) .From lemma 2 it is clear that the product A(i0,i0)

is not operation free. Hence, according to lemma 4, AI is not operation free.

– i0 − 1 ∈ M. There can be only one occurrence of i0 − 1 in M, since otherwise

i0−1 would be the minimum integer not satisfying the SIP. Thus,M = (ML, i0−
1,MR) where i0 − 1 /∈ MR and i0 − 1 /∈ ML. Using Lemma 1 we have I ∼
(L,ML, i0, (i0 − 1), i0,MR,R). Then AI = A(L,ML)A(i0,i0−1,i0)A(MR,R) is not

operation free in view of Lemma 3 in conjunction with lemma 4.

In both cases we have arrived at a contradiction. Hence, I satisfies the SIP.

(2 ⇒ 3) Assume that I satisfies the SIP and let m0 be the maximal index in I.

Using Lemma 8 we obtain that

I ∼ ((cm0 : m0), I1)
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where m0 /∈ I1. Assuming that m1 is the maximal index in I1 and reapplying Lemma

8 we obtain

I ∼ ((cm0 : m0), (cm1 : m1), I2)

where m0,m1 /∈ I2.Obviously m0 > m1. Proceeding accordingly we obtain

I ∼ ((cm0 : m0), (cm1 : m1), . . . , (cmp : mp))

where m0 > m1 > . . . > mp. The matrix product corresponding to I is

AI = A(cm0
:m0)A(cm1

:m1) . . . A(cmp :mp)

which is in column standard form if we take into account Remark 1 and introduce

terms of the form A(∞:i) for indices i /∈ {m0,m1, . . . ,mp}.
(3⇒ 1) This follows directly from theorem 1.

Theorem 2 can actually be extended to include a fourth equivalent statement, dual

to the third one. Given an operation free product AI , we consider its block transpose

which by Lemma 5 is given by

ABI = AĪ

Obviously, AĪ is an operation free product itself, so according to theorem 2 it can be

written in its column standard form

AĪ =

0∏
i=n−1

A(rj :j), for rj ∈ (0 : j) ∪ {∞}

where we have used indices ri, instead of ci. Now, reapply block transposition to ABI
to see that

(
ABI

)B
= ABĪ =

(
0∏

i=n−1

A(rj :j)

)B
=

n−1∏
j=0

AB(ri:i) =

n−1∏
j=0

A
(rj :j)

But
(
ABI

)B
= AI , so

AI =

n−1∏
j=0

A
(rj :j)

, for rj ∈ (0 : j) ∪ {∞} (20)

The form (20) will be termed row standard form of the operation free product AI .

So every operation free product AI can be written in row standard form. Reversely,

the product on the r.h.s. of (20) is clearly the block transpose of a column standard

form, thus an operation free product. Thus, AI is operation free if and only if it can

be written in row standard form.

Example 4 The matrix Ã = (A3A4A5)(A3A4)(A3)(A0A1A2)(A0) in example 1, using

the commutative properties of Ai can be written as

Ã = A3A4A5−→A3A4A3A0A1A2A0 = A3A4−→A3A0A1A0(A5A4A3A2) =

= A3−→A0A1A0(A4A3)(A5A4A3A2) = (A0)(A1A0)(A3)(A4A3)(A5A4A3A2) (21)
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which is in the row standard form (20). The arrow below the matrices denote that

in the next step the corresponding matrix will be forwarded as much to the right as

possible using the commutative properties of Ai. From the form of (21) we have the

following table concerning the rows of Ã.

# row Ti

1 T0

2 T0, T1

3

4 T3

5 T3, T4

6 T2, T3, T4, T5

(22)

Using the tables (17) and (22), the fact that the rows of Ã contain Ti in an ascending

order from left to right while the columns contain Ti in an ascending order from top

to bottom, one can deduce the positions of Ti’s without the need of carrying out the

multiplications.

Having explored a wide range of properties regarding operation free products of

Ak with k ∈ {0, . . . , n − 1}, we can note that similar results can be obtained using

products of A−1
k which have a particularly simple form, that is

A−k := A−1
k =


Ip(k−1) 0 · · ·

0 C−1
k

. . .

...
. . . Ip(n−k−1)

 , k = 1, . . . , n− 1 (23)

with

C−k := C−1
k =

[
Tk Ip
Ip 0

]
.

while we define A−n to be

A−n = diag{Ip(n−1), Tn}.

The definitions and properties regarding the index tuples can be naturally extended to

cover indices from the set {−n, ...,−1}.
It can be shown that products A(−k:−l) where 1 ≤ l ≤ k ≤ n have the form

A(−k:−l) =





Il−1

Tl
... I(k−l+1)

Tk
I 01×(k−l+1)

In−k−1


, l ≤ k < n


Il−1

Tl
... I(n−l)
Tn−1

Tn 01×(n−l)

 , k = n
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where the dimensions appearing in the zero and identity matrices are block dimensions.

In the following we generalize the definitions of operation free products and SIP to

deal with index tuples with elements in {−n, ...,−1}.

Definition 8 A product of two elementary matrices Ai, Aj with i, j ∈ {−n, ...,−1}
will be called operation free iff the block elements of the product are either 0, Ip or Ti
(for generic matrices Ti).

Definition 9 Let I = (i1, i2, . . . , ik) be an index tuple with elements from {−n, ...,−1}.
I will be called successor infixed if and only if for every pair of indices ia, ib ∈ I, with

1 ≤ a < b ≤ k, satisfying ia = ib, there exists at least one index ic = ia + 1, such that

a < c < b.

Using similar arguments as in the beginning of the section, the following theorem

holds.

Theorem 3 Let I = (i1, i2, . . . , im) be an index tuple from the set {−n, ...,−1}. The

following statements are equivalent

1. AI is operation free

2. I satisfies the SIP

3. AI can be written in the column standard form
−n∏
i=−1

A(ci:i), for ci ∈ (−n : i) ∪∞.

4. AI can be written in the row standard form
−1∏

j=−n
A

(rj :j)
, for rj ∈ (−n : j) ∪∞.

Example 5 Let T (s) a p× p polynomial matrix of degree n = 6. Then the product

Ã = A−4A−3A−5A−2A−1A−4A−3A−2A−5A−4A−5A−6

is an operation free product. Ã can be rewritten in the column standard form as

Ã = A(−4:−1)A(−5:−2)IA(−5:−4)A(−5:−5)A(−6:−6).

or in the row standard form as

Ã = A
(−5:−4)

A
(−5:−3)

A
(−6:−2)

A
(−2:−1)

=

= (A−4A−5)(A−3A−4A−5)(A−2A−3A−4A−5A−6)(A−1A−2).

After carrying out the operations, we can see that

Ã =


T1 T2 I 0 0 0

T2 T3 0 T4 T5 T6

T3 T4 0 T5 I 0

T4 T5 0 I 0 0

I 0 0 0 0 0

0 I 0 0 0 0


which is indeed operation free.
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Example 6 Let T (s) a p × p polynomial matrix of degree n = 4. The matrix Ã =
−n∏
i=−1

A(−n:i) is the symmetric matrix

Ã =


T1 T2 T3 T4

T2 T3 T4 0

T3 T4 0 0

T4 0 0 0

 .
The next Lemma follows easily as an extension of Lemma 1.

Lemma 9 Let Ai and Aj two elementary matrices with i, j ∈ {−n, ...,−1, 0, . . . , n−1}.
Then if ||i| − |j|| 6= 1 the two elementary matrices commute i.e. AiAj = AjAi.

3 Matrix pencil linearizations

First order representations of a polynomial matrix are of particular interest in many

research fields such as eigenvalue problems, systems and control theory etc. Out of the

infinite number of possible matrix pencil linearizations, in practice only a small subset

of them are typically used, the companion form linearizations. Companion forms of

polynomial matrices T (s) (or even scalar polynomials) are linearizations where both

the first order coefficient and the constant term consisting of block matrices 0,±Ip or

±Ti. Due to this property, companion forms are of particular interest in many research

fields both as a theoretical or computational tool since they are in general easier to

manipulate, provide better insight on the underlying problem and the lack operations

between the coefficients Ti, guarantees that the numerical data of the original problem

are not perturbed.

In the previous section we have defined a family of constant matrices derived from

the coefficients of a regular polynomial matrix T (s) using products of elementary ma-

trices and provided criteria for those products to contain only block matrices of the

form 0, Ip or ±Ti. In this section we will use those matrices to construct a new fam-

ily of companion like linearizations corresponding to a polynomial matrix T (s). It is

worth noting that using the criteria concerning operation free matrices presented in

the previous section, one can easily prove that the coefficients of the linearizations in

[1] and [2] are operation free. Before concentrating on the main topic of this section,

we will need the following auxiliary results.

Lemma 10 Let I be an index tuple having the SIP with elements from the set {0, 1, . . . , k}
where k ∈ {1, 2, . . . , n}. Then AI is of the form diag{X, In−k−1} where X is a

k + 1× k + 1 matrix.

Proof Since I has the SIP, AI can be rewritten in the column standard form i.e.

AI =
0∏
i=k

A(ci:i). Since the structure of the matrix A(ci:i) is known from (12), we can

easily see that AI = diag{X, In−k−1}.

Using similar arguments and the column standard form of negative indices, the

next Lemma can be proven.
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Lemma 11 Let I be an index tuple having the SIP with elements from the set {−n,−n+

1, . . . ,−k} where k ∈ {1, 2, . . . , n}. Then AI is of the form diag{Ik−1, Y } where Y is

a n− k + 1× n− k + 1 matrix.

Theorem 4 Let P be a permutation of the index tuple (0 : k−1) where k ∈ {1, 2, . . . , n}.
Let also LP ,RP index tuples with elements from the set {0, 1, . . . , k − 2} such that

(LP ,P,RP ) satisfies the SIP. Then (LP ,RP ) satisfies the SIP.

Proof Assume that (LP ,P,RP ) satisfies the SIP while (LP ,RP ) does not. Then there

must exist an index i such that between two of its occurrences in (LP ,RP ) no i + 1

index exists. Those two occurrences of i cannot exist both in LP or RP , because that

would mean in view of Lemma 4 that (LP ,P,RP ) does not have the SIP. Then by

choosing the rightmost problematic i in LP and the leftmost in RP we can write

LP = (LP1
, i,LP2

),

RP = (RP1
, i,RP2

),

where i 6∈ LP2
,RP1

. Then (LP ,P,RP ) can be rewritten as (LP1
, i,LP2

,P,RP1
, i,RP2

).

We then distinguish two cases.

– i + 1 ∈ P. Then by the definition of P, i ∈ P also, which makes (LP ,P,RP ) not

satisfying the SIP, which is a contradiction to the assumption.

– i+ 1 6∈ P. Then (LP ,P,RP ) does not satisfy the SIP, which is a contradiction to

the assumption.

Thus the Theorem holds.

Theorem 5 Let N be a permutation of the index tuple (−n : −k) where k ∈ {1, 2, . . . , n}.
Let also LN ,RN index tuples with elements from the set {−n,−n+1, . . . ,−k−1} such

that (LN ,N ,RN ) satisfies the SIP. Then (LN ,RN ) satisfies the SIP.

Proof The proof is analogous to the one of Theorem 4.

Theorem 6 Let T (s) be a regular p × p polynomial matrix with degree p with T0, Tn
nonsingular, k ∈ {1, 2, . . . , n} and P,N ,LP ,RP ,LN ,RN as described in Theorems 4

and 5. Then the matrix pencil

sA(LN ,LP ,N ,RP ,RN ) −A(LN ,LP ,P,RP ,RN ) (24)

is a linearization of the polynomial matrix T (s) using operation free products as coef-

ficients.

Proof It was proved in [1] and [2] that the matrix pencil sAN − AP is a linearization

of the polynomial matrix T (s). Using strict equivalence and the fact that T0, Tn are

nonsingular, we can conclude that the matrix pencil A(LN ,LP) (sAN −AP )A(RP ,RN )

is also a linearization of the polynomial matrix T (s). We now need to show that its

coefficients are operation free products.

– In view of Lemma 9 (LN ,LP ,N ,RP ,RN ) is equivalent to (LP ,RP ,LN ,N ,RN ).

From Theorem 4, (LP ,RP ) satisfies the SIP and so does (LN ,N ,RN ). Writ-

ing A(LP ,RP ,LN ,N ,RN ) = A(LN ,LP)A(LN ,N ,RN ) and noting that A(LP ,RP) =

diag{X, In−k+1} and A(LN ,N ,RN ) = diag{Ik−1, Y } (Lemmas 10 and 11), we can

conclude that A(LN ,LP ,N ,RP ,RN ) is operation free.
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– In view of Lemma 9 (LN ,LP ,P,RP ,RN ) is equivalent to (LN ,RN ,LP ,P,RP ).

From Theorem 5, (LN ,RN ) satisfies the SIP and so does (LP ,P,RP ). Writ-

ing A(LN ,RN ,LP ,P,RP) = A(LN ,RN )A(LP ,P,RP) and noting that A(LN ,RN ) =

diag{Y, Ik} and A(LP ,P,RP) = diag{In−k, X} (Lemmas 10 and 11), we can con-

clude that A(LN ,LP ,P,RP ,RN ) is operation free.

Theorem 6 is the main theorem of this paper, describing a new larger family of

linearizations. The constraint of T0, Tn nonsingular can be relaxed using the following

remark.

Remark 2 The constraint of T0 being nonsingular is needed only in the case that in one

(or even in both) LP ,RP exists the 0 index. The constraint of Tn being nonsingular

is needed only in the case that in one (or even in both) LN ,RN exists the index −n.

Proof The transforming matrices in the proof of Theorem 6 areA(LN ,LP) andA(RP ,RN ).

If T0 is singular but 0 6∈ LP ,RP both transforming matrices are nonsingular. If Tn is

singular but −n 6∈ LN ,RN both transforming matrices are nonsingular.

Obviously the family of linearizations in Theorem 6 includes linearizations that

have not appeared in [1] and [2] since in the products constructing the coefficients,

some elementary matrices appear more than once.

An interesting aspect of the family of linearizations 24 is that it includes all sym-

metric linearizations constructed by the matrices termed Si in [8], [9] and [10] which

has been shown to form a basis of the symmetric linearizations vector space in L1∩L2

in [11]. Also note that in the construction of Si both T0 and Tn should be nonsingular.

Corollary 1 Let T (s) a regular polynomial matrix of degree n, with T0, Tn nonsingu-

lar. Then the matrices Sk in in [8], [9] and [10] are constructed as

Sk = A
(Ik,I

′
k)

= A
(I′k,Ik)

, k = 0, . . . , n

where

Ik = ((0 : k − 1), . . . , (0 : 0))

I
′

k = ((−n : −k − 1), . . . , (−n : −n)).

Proof The proof is constructive noting thatAI1 = diag{Xk, In−k} andAI2 = diag{Ik, Yn−k}
where Xk and Yn−k are matrices of block dimensions k×k and n−k×n−k respectively.

The matrix pencils Lk(s) = sSk−1 − Sk, k = 1, . . . , n have been proven to be

linearizations of the polynomial matrix T (s). In the following we will show that they

are included in our new family of linearizations.

Corollary 2 The symmetric linearizations Lk(s) = sSk−1 − Sk, k = 1, . . . , n of [8],

[9] and [10] are produced by 24 by setting in Theorem 6

P = (0 : k − 1),

N=(−n : −k),

RP = ((0 : k − 2), . . . , (0 : 0)),

RN = ((−n : −k − 1), . . . , (−n : −n)),

LP = ∅,LN = ∅.
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Proof Since Ik = (P,RP ), I
′

k = RN , Ik−1 = (RP ), I
′

k−1 = (N ,RN ) the matrix

pencil sSk−1−Sk = sA
(Ik−1,I

′
k−1)
−A

(Ik,I
′
k)

can be written as sA(LN ,LP ,N ,RP ,RN )−
A(LN ,LP ,P,RP ,RN ) and so using Theorem 6 we conclude that is a linearization included

in the family 24.

Example 7 (Symmetric linearizations of multiplicative approach) Let T (s) a p×p poly-

nomial matrix of degree n = 5 with T0 and Tn nonsingular. Then setting k = 1 in the

previous corollary we have

P = (0),

N=(−5,−4,−3,−2,−1),

RN = (−5,−4,−3,−2,−5,−4,−3,−5,−4,−5),

LP ,LN ,RP = ∅

and

L1(s) = sS0 − S1 = sA(LN ,LP ,N ,RP ,RN ) −A(LN ,LP ,P,RP ,RN ) =

sA(N ,RN ) −A(P,RN ) = s


T1 T2 T3 T4 T5

T2 T3 T4 T5 0

T3 T4 T5 0 0

T4 T5 0 0 0

T5 0 0 0 0

−

−T0 0 0 0 0

0 T2 T3 T4 T5

0 T3 T4 T5 0

0 T4 T5 0 0

0 T5 0 0 0

 .
Notice that one can easily check that L1(s) is a block symmetric linearizations using

11, since (N ,RN ) ∼ (N ,RN ) and (P,RN ) ∼ (P,RN ). Correspondingly by using

k = 3 we have

P = (0, 1, 2),

N=(−5,−4,−3),

RP = (0, 1, 0),

RN = (−5,−4,−5),

LP ,LN = ∅

and

L3(s) = s


0 −T0 0 0 0

−T0 −T1 0 0 0

0 0 T3 T4 T5

0 0 T4 T5 0

0 0 T5 0 0

−


0 0 −T0 0 0

0 −T0 −T1 0 0

−T0 −T1 −T2 0 0

0 0 0 T4 T5

0 0 0 T5 0

 .
Similarly we can construct all the other linearizations appearing in [8], [9] and [10].

Although rewriting the matrices Si and the corresponding linearizations using prod-

ucts of elementary matrices is by itself an important theoretical tool providing in our

opinion more insight and a more natural method for their construction, it will be

shown in the following that it allows more control, producing several block symmetric

linearizations of similar form that have not appeared in the literature before, where

additionally the constraint of T0 and Tn being nonsingular can be relaxed. This can

be seen in the following example.
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Example 8 (Symmetric linearizations without nonsingularity constraints) Let T (s) a

p× p polynomial matrix of degree n = 5 without the constraint of nonsingularity for

T0 and Tn. Then by setting k = 1 and

P = (0),

N=(−1,−3,−2,−5,−4),

RN = (−3),

LN = (−3,−2,−4),

LP = RP = ∅,

we have

L
′

1(s) = sA(LN ,LP ,N ,RP ,RN ) −A(LN ,LP ,P,RP ,RN )

= s


T1 T2 T3 I 0

T2 T3 T4 0 I

T3 T4 T5 0 0

I 0 0 0 0

0 I 0 0 0

−

−T0 0 0 0 0

0 T2 T3 I 0

0 T3 T4 0 I

0 I 0 0 0

0 0 I 0 0


is a new symmetric linearization of T (s). Equivalently setting k = 3 and

P = (1, 2, 0),

N=(−5,−3,−4),

RP = (1),

LN = (−4),

LP = RN = ∅,

we have that

L
′

3(s) = s


0 I 0 0 0

I −T1 0 0 0

0 0 T3 T4 I

0 0 T4 T5 0

0 0 I 0 0

−


0 0 I 0 0

0 −T0 −T1 0 0

I −T1 −T2 0 0

0 0 0 T4 I

0 0 0 I 0


is a new symmetric linearization of T (s). Using similar arguments we can construct S

′

4

as

L
′

5(s) = s


0 0 I 0 0

0 0 0 I 0

I 0 −T1 −T2 0

0 I −T2 −T3 0

0 0 0 0 T5

−


0 0 0 I 0

0 0 0 0 I

0 0 −T0 −T1 −T2

I 0 −T1 −T2 −T3

0 I −T2 −T3 −T4

 .
Notice that in the light of Remark 2, L

′

1(s), L
′

3(s) and L
′

5(s) are linearizations even if

T0 and Tn are singular.

Obviously all the linearizations in the previous examples do not belong in the class

of linearizations proposed in [1] and [2]. Also the linearizations L
′

i(s) do not belong

in the family of linearizations L1, L2 introduced in [11], a fact that can be confirmed

using the shifted sum characterization of L1, L2 used therein.
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As a brief example on the simple construction of symmetric linearizations consider a

regular polynomial matrix T (s) of degree 4 with T0 non-singular and the pencil sẼ− Ã
with Ẽ = A2A0A−4 and Ã = A2 (A3A0A1A2)A0. Clearly sẼ − Ã is a linearization

of T (s). Then Ẽ is block symmetric since (2, 0,−4) ∼ (2, 0,−4) and so is Ã since

(2, 3, 0, 1, 2, 0) ∼ (2, 3, 0, 1, 2, 0). So sẼ − Ã is a block symmetric pencil of the form

s


−T0 0 0 0

0 0 I 0

0 I −T2 0

0 0 0 T4

−


0 0 −T0 0

0 0 0 I

−T0 0 −T1 −T2

0 I −T2 −T3

 .
Note also that this linearization also does not belong in the family of block symmetric

linearizations L1 ∩ L2 in [11].

4 Conclusions

In this paper we have established a new family of linearizations of polynomial matrices.

The linearizations are constructed using products of elementary matrices and have

a companion like structure. Some of the linearizations have been found to be block

symmetric and a subset of them do not require the nonsingularity constraints of T0

and Tn that usually appear in the literature. An interesting topic for further research,

is to apply these new linearizations in the case of T (s) being block skew symmetric,

palindromic etc.
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